Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125541342> ?p ?o ?g. }
- W3125541342 endingPage "705" @default.
- W3125541342 startingPage "692" @default.
- W3125541342 abstract "While source localization and seabed classification are often approached separately, the convolutional neural networks (CNNs) in this paper simultaneously predict seabed type, source depth and speed, and the closest point of approach. Different CNN architectures are applied to mid-frequency tonal levels from a moving source recorded on a 16-channel vertical line array (VLA). After training each CNN on synthetic data, a statistical representation of predictions on test cases is presented. The performance of a single regression-based CNN is compared to a multitask CNN in which regression is used for the source parameters and classification for the seabed type. The impact of water sound speed profile and seabed variations on the predictions is evaluated using simulated test cases. Environmental mismatch between the training and testing data has a negative impact on source depth estimates, while the remaining labels are estimated tolerably well but with a bias towards shorter ranges. Similar results are found for data measured on two VLAs during Seabed Characterization Experiment 2017. This work shows the superiority of multitask learning and the potential for using a CNN to localize an acoustic source and detect the surficial seabed properties from mid-frequency sounds." @default.
- W3125541342 created "2021-02-01" @default.
- W3125541342 creator A5012883213 @default.
- W3125541342 creator A5015674280 @default.
- W3125541342 creator A5034596914 @default.
- W3125541342 creator A5043509885 @default.
- W3125541342 creator A5056252056 @default.
- W3125541342 creator A5065488855 @default.
- W3125541342 creator A5077574875 @default.
- W3125541342 creator A5082276283 @default.
- W3125541342 date "2021-01-01" @default.
- W3125541342 modified "2023-09-24" @default.
- W3125541342 title "Learning location and seabed type from a moving mid-frequency source" @default.
- W3125541342 cites W1970241457 @default.
- W3125541342 cites W1985979253 @default.
- W3125541342 cites W1987293313 @default.
- W3125541342 cites W1989775534 @default.
- W3125541342 cites W1993339282 @default.
- W3125541342 cites W1997495732 @default.
- W3125541342 cites W2000017751 @default.
- W3125541342 cites W2009744884 @default.
- W3125541342 cites W2012617211 @default.
- W3125541342 cites W2018476730 @default.
- W3125541342 cites W2021756206 @default.
- W3125541342 cites W2027335764 @default.
- W3125541342 cites W2033525344 @default.
- W3125541342 cites W2038369443 @default.
- W3125541342 cites W2045873680 @default.
- W3125541342 cites W2050692148 @default.
- W3125541342 cites W2060763172 @default.
- W3125541342 cites W2062460851 @default.
- W3125541342 cites W2067366023 @default.
- W3125541342 cites W2071495921 @default.
- W3125541342 cites W2077043889 @default.
- W3125541342 cites W2080949500 @default.
- W3125541342 cites W2088321220 @default.
- W3125541342 cites W2090597107 @default.
- W3125541342 cites W2090894796 @default.
- W3125541342 cites W2092958372 @default.
- W3125541342 cites W2093435707 @default.
- W3125541342 cites W2109774805 @default.
- W3125541342 cites W2112796928 @default.
- W3125541342 cites W2118487269 @default.
- W3125541342 cites W2164758831 @default.
- W3125541342 cites W2170688105 @default.
- W3125541342 cites W2530294173 @default.
- W3125541342 cites W2768511943 @default.
- W3125541342 cites W2799286992 @default.
- W3125541342 cites W2804398209 @default.
- W3125541342 cites W2923289842 @default.
- W3125541342 cites W2948867990 @default.
- W3125541342 cites W2957982397 @default.
- W3125541342 cites W2969500160 @default.
- W3125541342 cites W2999162221 @default.
- W3125541342 cites W3014801121 @default.
- W3125541342 cites W3022198147 @default.
- W3125541342 cites W3033990150 @default.
- W3125541342 cites W3079313029 @default.
- W3125541342 cites W3103163183 @default.
- W3125541342 cites W3105475478 @default.
- W3125541342 doi "https://doi.org/10.1121/10.0003361" @default.
- W3125541342 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33514137" @default.
- W3125541342 hasPublicationYear "2021" @default.
- W3125541342 type Work @default.
- W3125541342 sameAs 3125541342 @default.
- W3125541342 citedByCount "17" @default.
- W3125541342 countsByYear W31255413422021 @default.
- W3125541342 countsByYear W31255413422022 @default.
- W3125541342 countsByYear W31255413422023 @default.
- W3125541342 crossrefType "journal-article" @default.
- W3125541342 hasAuthorship W3125541342A5012883213 @default.
- W3125541342 hasAuthorship W3125541342A5015674280 @default.
- W3125541342 hasAuthorship W3125541342A5034596914 @default.
- W3125541342 hasAuthorship W3125541342A5043509885 @default.
- W3125541342 hasAuthorship W3125541342A5056252056 @default.
- W3125541342 hasAuthorship W3125541342A5065488855 @default.
- W3125541342 hasAuthorship W3125541342A5077574875 @default.
- W3125541342 hasAuthorship W3125541342A5082276283 @default.
- W3125541342 hasBestOaLocation W31255413421 @default.
- W3125541342 hasConcept C111368507 @default.
- W3125541342 hasConcept C121332964 @default.
- W3125541342 hasConcept C127313418 @default.
- W3125541342 hasConcept C153180895 @default.
- W3125541342 hasConcept C154945302 @default.
- W3125541342 hasConcept C24890656 @default.
- W3125541342 hasConcept C33613203 @default.
- W3125541342 hasConcept C41008148 @default.
- W3125541342 hasConcept C81363708 @default.
- W3125541342 hasConceptScore W3125541342C111368507 @default.
- W3125541342 hasConceptScore W3125541342C121332964 @default.
- W3125541342 hasConceptScore W3125541342C127313418 @default.
- W3125541342 hasConceptScore W3125541342C153180895 @default.
- W3125541342 hasConceptScore W3125541342C154945302 @default.
- W3125541342 hasConceptScore W3125541342C24890656 @default.
- W3125541342 hasConceptScore W3125541342C33613203 @default.
- W3125541342 hasConceptScore W3125541342C41008148 @default.
- W3125541342 hasConceptScore W3125541342C81363708 @default.
- W3125541342 hasFunder F4320337345 @default.