Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125546619> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3125546619 abstract "Abstract Background Emotion prediction is a method that recognizes the human emotion derived from the subject’s psychological data. The problem in question is the limited use of heart rate (HR) as the prediction feature through the use of common classifiers such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Random Forest (RF) in emotion prediction. This paper aims to investigate whether HR signals can be utilized to classify four-class emotions using the emotion model from Russell’s in a virtual reality (VR) environment using machine learning. Method An experiment was conducted using the Empatica E4 wristband to acquire the participant’s HR, a VR headset as the display device for participants to view the 360° emotional videos, and the Empatica E4 real-time application was used during the experiment to extract and process the participant's recorded heart rate. Findings For intra-subject classification, all three classifiers SVM, KNN, and RF achieved 100% as the highest accuracy while inter-subject classification achieved 46.7% for SVM, 42.9% for KNN and 43.3% for RF. Conclusion The results demonstrate the potential of SVM, KNN and RF classifiers to classify HR as a feature to be used in emotion prediction in four distinct emotion classes in a virtual reality environment. The potential applications include interactive gaming, affective entertainment, and VR health rehabilitation." @default.
- W3125546619 created "2021-02-01" @default.
- W3125546619 creator A5020103786 @default.
- W3125546619 creator A5057024603 @default.
- W3125546619 creator A5065047307 @default.
- W3125546619 date "2021-01-07" @default.
- W3125546619 modified "2023-10-17" @default.
- W3125546619 title "Multiclass emotion prediction using heart rate and virtual reality stimuli" @default.
- W3125546619 cites W2002055708 @default.
- W3125546619 cites W2022123481 @default.
- W3125546619 cites W2402244642 @default.
- W3125546619 cites W2625929003 @default.
- W3125546619 cites W2736746591 @default.
- W3125546619 cites W2807819179 @default.
- W3125546619 cites W2947155785 @default.
- W3125546619 cites W3004330901 @default.
- W3125546619 cites W2768696038 @default.
- W3125546619 doi "https://doi.org/10.1186/s40537-020-00401-x" @default.
- W3125546619 hasPublicationYear "2021" @default.
- W3125546619 type Work @default.
- W3125546619 sameAs 3125546619 @default.
- W3125546619 citedByCount "15" @default.
- W3125546619 countsByYear W31255466192021 @default.
- W3125546619 countsByYear W31255466192022 @default.
- W3125546619 countsByYear W31255466192023 @default.
- W3125546619 crossrefType "journal-article" @default.
- W3125546619 hasAuthorship W3125546619A5020103786 @default.
- W3125546619 hasAuthorship W3125546619A5057024603 @default.
- W3125546619 hasAuthorship W3125546619A5065047307 @default.
- W3125546619 hasBestOaLocation W31255466191 @default.
- W3125546619 hasConcept C113238511 @default.
- W3125546619 hasConcept C119857082 @default.
- W3125546619 hasConcept C12267149 @default.
- W3125546619 hasConcept C138885662 @default.
- W3125546619 hasConcept C153180895 @default.
- W3125546619 hasConcept C154945302 @default.
- W3125546619 hasConcept C169258074 @default.
- W3125546619 hasConcept C194969405 @default.
- W3125546619 hasConcept C2776401178 @default.
- W3125546619 hasConcept C2777438025 @default.
- W3125546619 hasConcept C2780657452 @default.
- W3125546619 hasConcept C28490314 @default.
- W3125546619 hasConcept C41008148 @default.
- W3125546619 hasConcept C41895202 @default.
- W3125546619 hasConcept C52622490 @default.
- W3125546619 hasConcept C76155785 @default.
- W3125546619 hasConceptScore W3125546619C113238511 @default.
- W3125546619 hasConceptScore W3125546619C119857082 @default.
- W3125546619 hasConceptScore W3125546619C12267149 @default.
- W3125546619 hasConceptScore W3125546619C138885662 @default.
- W3125546619 hasConceptScore W3125546619C153180895 @default.
- W3125546619 hasConceptScore W3125546619C154945302 @default.
- W3125546619 hasConceptScore W3125546619C169258074 @default.
- W3125546619 hasConceptScore W3125546619C194969405 @default.
- W3125546619 hasConceptScore W3125546619C2776401178 @default.
- W3125546619 hasConceptScore W3125546619C2777438025 @default.
- W3125546619 hasConceptScore W3125546619C2780657452 @default.
- W3125546619 hasConceptScore W3125546619C28490314 @default.
- W3125546619 hasConceptScore W3125546619C41008148 @default.
- W3125546619 hasConceptScore W3125546619C41895202 @default.
- W3125546619 hasConceptScore W3125546619C52622490 @default.
- W3125546619 hasConceptScore W3125546619C76155785 @default.
- W3125546619 hasFunder F4320321709 @default.
- W3125546619 hasIssue "1" @default.
- W3125546619 hasLocation W31255466191 @default.
- W3125546619 hasLocation W31255466192 @default.
- W3125546619 hasOpenAccess W3125546619 @default.
- W3125546619 hasPrimaryLocation W31255466191 @default.
- W3125546619 hasRelatedWork W203536286 @default.
- W3125546619 hasRelatedWork W2126100045 @default.
- W3125546619 hasRelatedWork W2146076056 @default.
- W3125546619 hasRelatedWork W2336974148 @default.
- W3125546619 hasRelatedWork W2546942002 @default.
- W3125546619 hasRelatedWork W2883887418 @default.
- W3125546619 hasRelatedWork W3021364800 @default.
- W3125546619 hasRelatedWork W3195168932 @default.
- W3125546619 hasRelatedWork W4298005273 @default.
- W3125546619 hasRelatedWork W2345184372 @default.
- W3125546619 hasVolume "8" @default.
- W3125546619 isParatext "false" @default.
- W3125546619 isRetracted "false" @default.
- W3125546619 magId "3125546619" @default.
- W3125546619 workType "article" @default.