Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125655445> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3125655445 abstract "Gas demand forecasting is a critical task for energy providers as it impacts on pipe reservation and stock planning. In this paper, the one-day-ahead forecasting of residential gas demand at country level is investigated by implementing and comparing five models: Ridge Regression, Gaussian Process (GP), k-Nearest Neighbour, Artificial Neural Network (ANN), and Torus Model. Italian demand data from 2007 to 2017 are used for training and testing the proposed algorithms. The choice of the relevant covariates and the most significant aspects of the pre-processing and feature extraction steps are discussed in-depth, lending particular attention to the role of one-day-ahead temperature forecasts. Our best model, in terms of Root Mean Squared Error (RMSE), is the ANN, closely followed by the GP. If the Mean Absolute Error (MAE) is taken as an error measure, the GP becomes the best model, although by a narrow margin. A main novel contribution is the development of a model describing the propagation of temperature errors to gas forecasting errors that is successfully validated on experimental data. Being able to predict the quantitative impact of temperature forecasts on gas forecasts could be useful in order to assess potential improvement margins associated with more sophisticated weather forecasts. On the Italian data, it is shown that temperature forecast errors account for some 18% of the mean squared error of gas demand forecasts provided by ANN." @default.
- W3125655445 created "2021-02-01" @default.
- W3125655445 creator A5010969664 @default.
- W3125655445 creator A5017270452 @default.
- W3125655445 creator A5089085152 @default.
- W3125655445 date "2021-01-01" @default.
- W3125655445 modified "2023-09-23" @default.
- W3125655445 title "Forecasting residential gas demand: machine learning approaches and seasonal role of temperature forecasts" @default.
- W3125655445 cites W1503398984 @default.
- W3125655445 cites W1522301498 @default.
- W3125655445 cites W1554944419 @default.
- W3125655445 cites W1583608323 @default.
- W3125655445 cites W1746819321 @default.
- W3125655445 cites W1887986397 @default.
- W3125655445 cites W1963687576 @default.
- W3125655445 cites W1977432880 @default.
- W3125655445 cites W1981865106 @default.
- W3125655445 cites W1985810808 @default.
- W3125655445 cites W2010721786 @default.
- W3125655445 cites W2020995787 @default.
- W3125655445 cites W2021903970 @default.
- W3125655445 cites W2074408770 @default.
- W3125655445 cites W2081193951 @default.
- W3125655445 cites W2092514020 @default.
- W3125655445 cites W2131644427 @default.
- W3125655445 cites W2437615532 @default.
- W3125655445 cites W2557283755 @default.
- W3125655445 cites W2566970311 @default.
- W3125655445 cites W2759257403 @default.
- W3125655445 cites W2801179766 @default.
- W3125655445 cites W2910062001 @default.
- W3125655445 cites W3048797265 @default.
- W3125655445 doi "https://doi.org/10.1504/ijogct.2021.10035081" @default.
- W3125655445 hasPublicationYear "2021" @default.
- W3125655445 type Work @default.
- W3125655445 sameAs 3125655445 @default.
- W3125655445 citedByCount "1" @default.
- W3125655445 countsByYear W31256554452021 @default.
- W3125655445 crossrefType "journal-article" @default.
- W3125655445 hasAuthorship W3125655445A5010969664 @default.
- W3125655445 hasAuthorship W3125655445A5017270452 @default.
- W3125655445 hasAuthorship W3125655445A5089085152 @default.
- W3125655445 hasBestOaLocation W31256554452 @default.
- W3125655445 hasConcept C105795698 @default.
- W3125655445 hasConcept C119857082 @default.
- W3125655445 hasConcept C138885662 @default.
- W3125655445 hasConcept C139945424 @default.
- W3125655445 hasConcept C149782125 @default.
- W3125655445 hasConcept C188154048 @default.
- W3125655445 hasConcept C205649164 @default.
- W3125655445 hasConcept C2776401178 @default.
- W3125655445 hasConcept C32277403 @default.
- W3125655445 hasConcept C33923547 @default.
- W3125655445 hasConcept C41008148 @default.
- W3125655445 hasConcept C41895202 @default.
- W3125655445 hasConcept C50644808 @default.
- W3125655445 hasConcept C58640448 @default.
- W3125655445 hasConcept C774472 @default.
- W3125655445 hasConceptScore W3125655445C105795698 @default.
- W3125655445 hasConceptScore W3125655445C119857082 @default.
- W3125655445 hasConceptScore W3125655445C138885662 @default.
- W3125655445 hasConceptScore W3125655445C139945424 @default.
- W3125655445 hasConceptScore W3125655445C149782125 @default.
- W3125655445 hasConceptScore W3125655445C188154048 @default.
- W3125655445 hasConceptScore W3125655445C205649164 @default.
- W3125655445 hasConceptScore W3125655445C2776401178 @default.
- W3125655445 hasConceptScore W3125655445C32277403 @default.
- W3125655445 hasConceptScore W3125655445C33923547 @default.
- W3125655445 hasConceptScore W3125655445C41008148 @default.
- W3125655445 hasConceptScore W3125655445C41895202 @default.
- W3125655445 hasConceptScore W3125655445C50644808 @default.
- W3125655445 hasConceptScore W3125655445C58640448 @default.
- W3125655445 hasConceptScore W3125655445C774472 @default.
- W3125655445 hasLocation W31256554451 @default.
- W3125655445 hasLocation W31256554452 @default.
- W3125655445 hasOpenAccess W3125655445 @default.
- W3125655445 hasPrimaryLocation W31256554451 @default.
- W3125655445 hasRelatedWork W10294716 @default.
- W3125655445 hasRelatedWork W11496332 @default.
- W3125655445 hasRelatedWork W1921739 @default.
- W3125655445 hasRelatedWork W2651036 @default.
- W3125655445 hasRelatedWork W3399313 @default.
- W3125655445 hasRelatedWork W3785433 @default.
- W3125655445 hasRelatedWork W4735769 @default.
- W3125655445 hasRelatedWork W4780711 @default.
- W3125655445 hasRelatedWork W5551697 @default.
- W3125655445 hasRelatedWork W11029129 @default.
- W3125655445 isParatext "false" @default.
- W3125655445 isRetracted "false" @default.
- W3125655445 magId "3125655445" @default.
- W3125655445 workType "article" @default.