Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125731704> ?p ?o ?g. }
- W3125731704 endingPage "758" @default.
- W3125731704 startingPage "727" @default.
- W3125731704 abstract "Abstract LIDAR sensors are usually used to provide autonomous vehicles with three‐dimensional representations of their environment. In ideal conditions, geometrical models could detect the road in LIDAR scans, at the cost of a manual tuning of numerical constraints, and a lack of flexibility. We instead propose an evidential pipeline, to accumulate road detection results obtained from neural networks. First, we introduce RoadSeg, a new convolutional architecture that is optimized for road detection in LIDAR scans. RoadSeg is used to classify individual LIDAR points as either belonging to the road, or not. Yet, such point‐level classification results need to be converted into a dense representation, that can be used by an autonomous vehicle. We thus second present an evidential road mapping algorithm, that fuses consecutive road detection results. We benefitted from a reinterpretation of logistic classifiers, which can be seen as generating a collection of simple evidential mass functions. An evidential grid map that depicts the road can then be obtained, by projecting the classification results from RoadSeg into grid cells, and by handling moving objects via conflict analysis. The system was trained and evaluated on real‐life data. A python implementation maintains a 10 Hz framerate. Since road labels were needed for training, a soft labeling procedure, relying lane‐level HD maps, was used to generate coarse training and validation sets. An additional test set was manually labeled for evaluation purposes. So as to reach satisfactory results, the system fuses road detection results obtained from three variants of RoadSeg, processing different LIDAR features." @default.
- W3125731704 created "2021-02-01" @default.
- W3125731704 creator A5047434975 @default.
- W3125731704 creator A5052547773 @default.
- W3125731704 creator A5082916959 @default.
- W3125731704 creator A5091860594 @default.
- W3125731704 date "2021-01-14" @default.
- W3125731704 modified "2023-09-25" @default.
- W3125731704 title "Fusion of neural networks, for LIDAR‐based evidential road mapping" @default.
- W3125731704 cites W1878337193 @default.
- W3125731704 cites W1984266349 @default.
- W3125731704 cites W1995550199 @default.
- W3125731704 cites W2020797150 @default.
- W3125731704 cites W2071347898 @default.
- W3125731704 cites W2095869861 @default.
- W3125731704 cites W2105632441 @default.
- W3125731704 cites W2112325580 @default.
- W3125731704 cites W2116764847 @default.
- W3125731704 cites W2138534490 @default.
- W3125731704 cites W2155277051 @default.
- W3125731704 cites W2164363236 @default.
- W3125731704 cites W2167222293 @default.
- W3125731704 cites W2170732147 @default.
- W3125731704 cites W2196829765 @default.
- W3125731704 cites W2596750703 @default.
- W3125731704 cites W2607626645 @default.
- W3125731704 cites W2741174480 @default.
- W3125731704 cites W2805655184 @default.
- W3125731704 cites W2810441858 @default.
- W3125731704 cites W2888291913 @default.
- W3125731704 cites W2891329668 @default.
- W3125731704 cites W2891551809 @default.
- W3125731704 cites W2898227465 @default.
- W3125731704 cites W2932012013 @default.
- W3125731704 cites W2949205176 @default.
- W3125731704 cites W2962912109 @default.
- W3125731704 cites W2963440325 @default.
- W3125731704 cites W2963727135 @default.
- W3125731704 cites W2964062501 @default.
- W3125731704 cites W2968557240 @default.
- W3125731704 cites W2970919361 @default.
- W3125731704 cites W2991216808 @default.
- W3125731704 cites W3003437478 @default.
- W3125731704 cites W3035574168 @default.
- W3125731704 cites W3103673966 @default.
- W3125731704 cites W3103830808 @default.
- W3125731704 cites W3105556985 @default.
- W3125731704 cites W4301347335 @default.
- W3125731704 doi "https://doi.org/10.1002/rob.22009" @default.
- W3125731704 hasPublicationYear "2021" @default.
- W3125731704 type Work @default.
- W3125731704 sameAs 3125731704 @default.
- W3125731704 citedByCount "1" @default.
- W3125731704 countsByYear W31257317042023 @default.
- W3125731704 crossrefType "journal-article" @default.
- W3125731704 hasAuthorship W3125731704A5047434975 @default.
- W3125731704 hasAuthorship W3125731704A5052547773 @default.
- W3125731704 hasAuthorship W3125731704A5082916959 @default.
- W3125731704 hasAuthorship W3125731704A5091860594 @default.
- W3125731704 hasBestOaLocation W31257317042 @default.
- W3125731704 hasConcept C124101348 @default.
- W3125731704 hasConcept C131979681 @default.
- W3125731704 hasConcept C13280743 @default.
- W3125731704 hasConcept C153180895 @default.
- W3125731704 hasConcept C154945302 @default.
- W3125731704 hasConcept C156172958 @default.
- W3125731704 hasConcept C187691185 @default.
- W3125731704 hasConcept C19966478 @default.
- W3125731704 hasConcept C205649164 @default.
- W3125731704 hasConcept C2776151529 @default.
- W3125731704 hasConcept C31972630 @default.
- W3125731704 hasConcept C41008148 @default.
- W3125731704 hasConcept C51399673 @default.
- W3125731704 hasConcept C57077369 @default.
- W3125731704 hasConcept C62649853 @default.
- W3125731704 hasConcept C81363708 @default.
- W3125731704 hasConcept C90509273 @default.
- W3125731704 hasConceptScore W3125731704C124101348 @default.
- W3125731704 hasConceptScore W3125731704C131979681 @default.
- W3125731704 hasConceptScore W3125731704C13280743 @default.
- W3125731704 hasConceptScore W3125731704C153180895 @default.
- W3125731704 hasConceptScore W3125731704C154945302 @default.
- W3125731704 hasConceptScore W3125731704C156172958 @default.
- W3125731704 hasConceptScore W3125731704C187691185 @default.
- W3125731704 hasConceptScore W3125731704C19966478 @default.
- W3125731704 hasConceptScore W3125731704C205649164 @default.
- W3125731704 hasConceptScore W3125731704C2776151529 @default.
- W3125731704 hasConceptScore W3125731704C31972630 @default.
- W3125731704 hasConceptScore W3125731704C41008148 @default.
- W3125731704 hasConceptScore W3125731704C51399673 @default.
- W3125731704 hasConceptScore W3125731704C57077369 @default.
- W3125731704 hasConceptScore W3125731704C62649853 @default.
- W3125731704 hasConceptScore W3125731704C81363708 @default.
- W3125731704 hasConceptScore W3125731704C90509273 @default.
- W3125731704 hasIssue "5" @default.
- W3125731704 hasLocation W31257317041 @default.
- W3125731704 hasLocation W31257317042 @default.
- W3125731704 hasLocation W31257317043 @default.