Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125931202> ?p ?o ?g. }
- W3125931202 endingPage "195401" @default.
- W3125931202 startingPage "195401" @default.
- W3125931202 abstract "Abstract We investigate a diffusion process with a time-dependent diffusion coefficient, both exponentially increasing and decreasing in time, <?CDATA $D(t) = D_0 e^{pm 2 alpha t} $?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>D</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>D</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mo>±</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:msup> </mml:math> . For this (hypothetical) nonstationary diffusion process we compute—both analytically and from extensive stochastic simulations—the behavior of the ensemble- and time-averaged mean-squared displacements (MSDs) of the particles, both in the over- and underdamped limits. Simple asymptotic relations derived for the short- and long-time behaviors are shown to be in excellent agreement with the results of simulations. The diffusive characteristics in the presence of ageing are also considered, with dramatic differences of the over- versus underdamped regime. Our results for <?CDATA $D(t) = D_0 e^{pm 2 alpha t}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>D</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>D</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mo>±</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:msup> </mml:math> extend and generalize the class of diffusive systems obeying scaled Brownian motion featuring a power-law-like variation of the diffusivity with time, <?CDATA $D(t) sim t^{alpha -1}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>D</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>∼</mml:mo> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> . We also examine the logarithmically increasing diffusivity, <?CDATA $ D(t) = D_0 log [t/ tau_0] $?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>D</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mi>log</mml:mi> <mml:mo stretchy=false>[</mml:mo> <mml:mi>t</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>τ</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>]</mml:mo> </mml:mrow> </mml:math> , as another fundamental functional dependence (in addition to the power-law and exponential) and as an example of diffusivity slowly varying in time. One of the main conclusions is that the behavior of the massive particles is predominantly ergodic, while weak ergodicity breaking is repeatedly found for the time-dependent diffusion of the massless particles at short times. The latter manifests itself in the nonequivalence of the (both nonaged and aged) MSD and the mean time-averaged MSD. The current findings are potentially applicable to a class of physical systems out of thermal equilibrium where a rapid increase or decrease of the particles’ diffusivity is inherently realized. One biological system potentially featuring all three types of time-dependent diffusion (power-law-like, exponential, and logarithmic) is water diffusion in the brain tissues, as we thoroughly discuss in the end." @default.
- W3125931202 created "2021-02-01" @default.
- W3125931202 creator A5000538495 @default.
- W3125931202 creator A5034168186 @default.
- W3125931202 creator A5044662930 @default.
- W3125931202 date "2021-02-25" @default.
- W3125931202 modified "2023-10-10" @default.
- W3125931202 title "Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity: striking differences for massive versus massless particles" @default.
- W3125931202 cites W1487024703 @default.
- W3125931202 cites W1658411289 @default.
- W3125931202 cites W1829170282 @default.
- W3125931202 cites W1928944069 @default.
- W3125931202 cites W1967094356 @default.
- W3125931202 cites W1968771657 @default.
- W3125931202 cites W1973400757 @default.
- W3125931202 cites W1975975963 @default.
- W3125931202 cites W1976776824 @default.
- W3125931202 cites W1976935425 @default.
- W3125931202 cites W1978656901 @default.
- W3125931202 cites W1980752513 @default.
- W3125931202 cites W1983961421 @default.
- W3125931202 cites W1984790459 @default.
- W3125931202 cites W1986490461 @default.
- W3125931202 cites W1987580929 @default.
- W3125931202 cites W1987960411 @default.
- W3125931202 cites W1989279858 @default.
- W3125931202 cites W1994827104 @default.
- W3125931202 cites W1996593003 @default.
- W3125931202 cites W1998904894 @default.
- W3125931202 cites W1999700033 @default.
- W3125931202 cites W2004448265 @default.
- W3125931202 cites W2009354582 @default.
- W3125931202 cites W2012371575 @default.
- W3125931202 cites W2016533177 @default.
- W3125931202 cites W2019946165 @default.
- W3125931202 cites W2021240778 @default.
- W3125931202 cites W2024739052 @default.
- W3125931202 cites W2032231874 @default.
- W3125931202 cites W2033293930 @default.
- W3125931202 cites W2033484476 @default.
- W3125931202 cites W2033541193 @default.
- W3125931202 cites W2034352409 @default.
- W3125931202 cites W2034876354 @default.
- W3125931202 cites W2042492157 @default.
- W3125931202 cites W2048041195 @default.
- W3125931202 cites W2051858265 @default.
- W3125931202 cites W2055344510 @default.
- W3125931202 cites W2057189552 @default.
- W3125931202 cites W2057383410 @default.
- W3125931202 cites W2058402549 @default.
- W3125931202 cites W2058757440 @default.
- W3125931202 cites W2058946062 @default.
- W3125931202 cites W2060757311 @default.
- W3125931202 cites W2061749936 @default.
- W3125931202 cites W2062517214 @default.
- W3125931202 cites W2063001897 @default.
- W3125931202 cites W2069364984 @default.
- W3125931202 cites W2070342495 @default.
- W3125931202 cites W2077791698 @default.
- W3125931202 cites W2079068194 @default.
- W3125931202 cites W2079111057 @default.
- W3125931202 cites W2080878566 @default.
- W3125931202 cites W2088247116 @default.
- W3125931202 cites W2090827852 @default.
- W3125931202 cites W2091464855 @default.
- W3125931202 cites W2092426513 @default.
- W3125931202 cites W2095165504 @default.
- W3125931202 cites W2095686499 @default.
- W3125931202 cites W2098514243 @default.
- W3125931202 cites W2100376401 @default.
- W3125931202 cites W2100509843 @default.
- W3125931202 cites W2101269170 @default.
- W3125931202 cites W2107885482 @default.
- W3125931202 cites W2111271983 @default.
- W3125931202 cites W2113886633 @default.
- W3125931202 cites W2122992893 @default.
- W3125931202 cites W2124691294 @default.
- W3125931202 cites W2133902464 @default.
- W3125931202 cites W2134695036 @default.
- W3125931202 cites W2135438092 @default.
- W3125931202 cites W2146930907 @default.
- W3125931202 cites W2148983475 @default.
- W3125931202 cites W2167199187 @default.
- W3125931202 cites W2171813100 @default.
- W3125931202 cites W2176220900 @default.
- W3125931202 cites W2248936040 @default.
- W3125931202 cites W2258076603 @default.
- W3125931202 cites W2264152830 @default.
- W3125931202 cites W2266947307 @default.
- W3125931202 cites W2273193465 @default.
- W3125931202 cites W2282437794 @default.
- W3125931202 cites W2312428417 @default.
- W3125931202 cites W2315265924 @default.
- W3125931202 cites W2315377588 @default.
- W3125931202 cites W2316435579 @default.
- W3125931202 cites W2321748615 @default.
- W3125931202 cites W2324675423 @default.
- W3125931202 cites W2327944901 @default.