Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125961894> ?p ?o ?g. }
- W3125961894 abstract "An exact maximum likelihood method is developed for the estimation of parameters in a non-Gaussian nonlinear log-density function that depends on a latent Gaussian dynamic process with long-memory properties. Our method relies on the method of importance sampling and on a linear Gaussian approximating model from which the latent process can be simulated. Given the presence of a latent long-memory process, we require a modification of the importance sampling technique. In particular, the long-memory process needs to be approximated by a finite dynamic linear process. Two possible approximations are discussed and are compared with each other. We show that an auto-regression obtained from minimizing mean squared prediction errors leads to an effective and feasible method. In our empirical study we analyze ten log-return series from the S&P 500 stock index by uni variate and multivariate long-memory stochastic volatility models." @default.
- W3125961894 created "2021-02-01" @default.
- W3125961894 creator A5032807265 @default.
- W3125961894 creator A5056085635 @default.
- W3125961894 creator A5064311560 @default.
- W3125961894 date "2011-01-01" @default.
- W3125961894 modified "2023-09-25" @default.
- W3125961894 title "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models" @default.
- W3125961894 cites W1251636171 @default.
- W3125961894 cites W1555092484 @default.
- W3125961894 cites W1572130374 @default.
- W3125961894 cites W1587896874 @default.
- W3125961894 cites W1784300750 @default.
- W3125961894 cites W1875153640 @default.
- W3125961894 cites W1973694910 @default.
- W3125961894 cites W1983818306 @default.
- W3125961894 cites W1985037657 @default.
- W3125961894 cites W1990511164 @default.
- W3125961894 cites W1993128234 @default.
- W3125961894 cites W1994823593 @default.
- W3125961894 cites W2005424182 @default.
- W3125961894 cites W2011586511 @default.
- W3125961894 cites W2017693145 @default.
- W3125961894 cites W2025262040 @default.
- W3125961894 cites W2032502219 @default.
- W3125961894 cites W2034161641 @default.
- W3125961894 cites W2045411880 @default.
- W3125961894 cites W2048155618 @default.
- W3125961894 cites W2055781590 @default.
- W3125961894 cites W2057565703 @default.
- W3125961894 cites W2077655468 @default.
- W3125961894 cites W2086865744 @default.
- W3125961894 cites W2090511230 @default.
- W3125961894 cites W2098823293 @default.
- W3125961894 cites W2116807840 @default.
- W3125961894 cites W2119825294 @default.
- W3125961894 cites W2120648119 @default.
- W3125961894 cites W2121448470 @default.
- W3125961894 cites W2122135039 @default.
- W3125961894 cites W2125581242 @default.
- W3125961894 cites W2135803994 @default.
- W3125961894 cites W2138785270 @default.
- W3125961894 cites W2147269409 @default.
- W3125961894 cites W2152135597 @default.
- W3125961894 cites W2164718628 @default.
- W3125961894 cites W2319085245 @default.
- W3125961894 cites W2336304194 @default.
- W3125961894 cites W2497534953 @default.
- W3125961894 cites W2615953416 @default.
- W3125961894 cites W3029645440 @default.
- W3125961894 cites W3123142683 @default.
- W3125961894 doi "https://doi.org/10.2139/ssrn.1873225" @default.
- W3125961894 hasPublicationYear "2011" @default.
- W3125961894 type Work @default.
- W3125961894 sameAs 3125961894 @default.
- W3125961894 citedByCount "0" @default.
- W3125961894 crossrefType "journal-article" @default.
- W3125961894 hasAuthorship W3125961894A5032807265 @default.
- W3125961894 hasAuthorship W3125961894A5056085635 @default.
- W3125961894 hasAuthorship W3125961894A5064311560 @default.
- W3125961894 hasBestOaLocation W31259618942 @default.
- W3125961894 hasConcept C105795698 @default.
- W3125961894 hasConcept C11413529 @default.
- W3125961894 hasConcept C121332964 @default.
- W3125961894 hasConcept C126255220 @default.
- W3125961894 hasConcept C143724316 @default.
- W3125961894 hasConcept C149782125 @default.
- W3125961894 hasConcept C151730666 @default.
- W3125961894 hasConcept C163716315 @default.
- W3125961894 hasConcept C19499675 @default.
- W3125961894 hasConcept C28826006 @default.
- W3125961894 hasConcept C33923547 @default.
- W3125961894 hasConcept C41008148 @default.
- W3125961894 hasConcept C52740198 @default.
- W3125961894 hasConcept C61326573 @default.
- W3125961894 hasConcept C62520636 @default.
- W3125961894 hasConcept C85393063 @default.
- W3125961894 hasConcept C86803240 @default.
- W3125961894 hasConcept C91602232 @default.
- W3125961894 hasConceptScore W3125961894C105795698 @default.
- W3125961894 hasConceptScore W3125961894C11413529 @default.
- W3125961894 hasConceptScore W3125961894C121332964 @default.
- W3125961894 hasConceptScore W3125961894C126255220 @default.
- W3125961894 hasConceptScore W3125961894C143724316 @default.
- W3125961894 hasConceptScore W3125961894C149782125 @default.
- W3125961894 hasConceptScore W3125961894C151730666 @default.
- W3125961894 hasConceptScore W3125961894C163716315 @default.
- W3125961894 hasConceptScore W3125961894C19499675 @default.
- W3125961894 hasConceptScore W3125961894C28826006 @default.
- W3125961894 hasConceptScore W3125961894C33923547 @default.
- W3125961894 hasConceptScore W3125961894C41008148 @default.
- W3125961894 hasConceptScore W3125961894C52740198 @default.
- W3125961894 hasConceptScore W3125961894C61326573 @default.
- W3125961894 hasConceptScore W3125961894C62520636 @default.
- W3125961894 hasConceptScore W3125961894C85393063 @default.
- W3125961894 hasConceptScore W3125961894C86803240 @default.
- W3125961894 hasConceptScore W3125961894C91602232 @default.
- W3125961894 hasLocation W31259618941 @default.
- W3125961894 hasLocation W31259618942 @default.
- W3125961894 hasLocation W31259618943 @default.