Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126122061> ?p ?o ?g. }
- W3126122061 endingPage "207" @default.
- W3126122061 startingPage "185" @default.
- W3126122061 abstract "The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this paper, we consider a feature-wise kernelized Lasso for capturing non-linear input-output dependency. We first show that, with particular choices of kernel functions, non-redundant features with strong statistical dependence on output values can be found in terms of kernel-based independence measures. We then show that the globally optimal solution can be efficiently computed; this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method is demonstrated through feature selection experiments with thousands of features." @default.
- W3126122061 created "2021-02-01" @default.
- W3126122061 creator A5009547049 @default.
- W3126122061 creator A5046358579 @default.
- W3126122061 creator A5053011888 @default.
- W3126122061 creator A5063407210 @default.
- W3126122061 creator A5072755496 @default.
- W3126122061 date "2014-01-01" @default.
- W3126122061 modified "2023-10-01" @default.
- W3126122061 title "High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso" @default.
- W3126122061 cites W1480376833 @default.
- W3126122061 cites W1638081485 @default.
- W3126122061 cites W1647376582 @default.
- W3126122061 cites W1996287810 @default.
- W3126122061 cites W2006262045 @default.
- W3126122061 cites W2020082788 @default.
- W3126122061 cites W2075843680 @default.
- W3126122061 cites W2083505311 @default.
- W3126122061 cites W2087257760 @default.
- W3126122061 cites W2098766654 @default.
- W3126122061 cites W2102903204 @default.
- W3126122061 cites W2106398669 @default.
- W3126122061 cites W2115706991 @default.
- W3126122061 cites W2120875981 @default.
- W3126122061 cites W2122825543 @default.
- W3126122061 cites W2126607811 @default.
- W3126122061 cites W2131987814 @default.
- W3126122061 cites W2145473366 @default.
- W3126122061 cites W2154053567 @default.
- W3126122061 cites W2155529673 @default.
- W3126122061 cites W2160222246 @default.
- W3126122061 cites W2562162676 @default.
- W3126122061 cites W2593996946 @default.
- W3126122061 cites W3022380717 @default.
- W3126122061 cites W4250589301 @default.
- W3126122061 doi "https://doi.org/10.1162/neco_a_00537" @default.
- W3126122061 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24102126" @default.
- W3126122061 hasPublicationYear "2014" @default.
- W3126122061 type Work @default.
- W3126122061 sameAs 3126122061 @default.
- W3126122061 citedByCount "206" @default.
- W3126122061 countsByYear W31261220612014 @default.
- W3126122061 countsByYear W31261220612015 @default.
- W3126122061 countsByYear W31261220612016 @default.
- W3126122061 countsByYear W31261220612017 @default.
- W3126122061 countsByYear W31261220612018 @default.
- W3126122061 countsByYear W31261220612019 @default.
- W3126122061 countsByYear W31261220612020 @default.
- W3126122061 countsByYear W31261220612021 @default.
- W3126122061 countsByYear W31261220612022 @default.
- W3126122061 countsByYear W31261220612023 @default.
- W3126122061 crossrefType "journal-article" @default.
- W3126122061 hasAuthorship W3126122061A5009547049 @default.
- W3126122061 hasAuthorship W3126122061A5046358579 @default.
- W3126122061 hasAuthorship W3126122061A5053011888 @default.
- W3126122061 hasAuthorship W3126122061A5063407210 @default.
- W3126122061 hasAuthorship W3126122061A5072755496 @default.
- W3126122061 hasBestOaLocation W31261220612 @default.
- W3126122061 hasConcept C105795698 @default.
- W3126122061 hasConcept C11413529 @default.
- W3126122061 hasConcept C114614502 @default.
- W3126122061 hasConcept C119857082 @default.
- W3126122061 hasConcept C136764020 @default.
- W3126122061 hasConcept C138885662 @default.
- W3126122061 hasConcept C148483581 @default.
- W3126122061 hasConcept C153180895 @default.
- W3126122061 hasConcept C154945302 @default.
- W3126122061 hasConcept C19768560 @default.
- W3126122061 hasConcept C2776401178 @default.
- W3126122061 hasConcept C33923547 @default.
- W3126122061 hasConcept C35651441 @default.
- W3126122061 hasConcept C37616216 @default.
- W3126122061 hasConcept C41008148 @default.
- W3126122061 hasConcept C41895202 @default.
- W3126122061 hasConcept C74193536 @default.
- W3126122061 hasConcept C81917197 @default.
- W3126122061 hasConceptScore W3126122061C105795698 @default.
- W3126122061 hasConceptScore W3126122061C11413529 @default.
- W3126122061 hasConceptScore W3126122061C114614502 @default.
- W3126122061 hasConceptScore W3126122061C119857082 @default.
- W3126122061 hasConceptScore W3126122061C136764020 @default.
- W3126122061 hasConceptScore W3126122061C138885662 @default.
- W3126122061 hasConceptScore W3126122061C148483581 @default.
- W3126122061 hasConceptScore W3126122061C153180895 @default.
- W3126122061 hasConceptScore W3126122061C154945302 @default.
- W3126122061 hasConceptScore W3126122061C19768560 @default.
- W3126122061 hasConceptScore W3126122061C2776401178 @default.
- W3126122061 hasConceptScore W3126122061C33923547 @default.
- W3126122061 hasConceptScore W3126122061C35651441 @default.
- W3126122061 hasConceptScore W3126122061C37616216 @default.
- W3126122061 hasConceptScore W3126122061C41008148 @default.
- W3126122061 hasConceptScore W3126122061C41895202 @default.
- W3126122061 hasConceptScore W3126122061C74193536 @default.
- W3126122061 hasConceptScore W3126122061C81917197 @default.
- W3126122061 hasIssue "1" @default.
- W3126122061 hasLocation W31261220611 @default.
- W3126122061 hasLocation W31261220612 @default.
- W3126122061 hasLocation W31261220613 @default.