Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126124476> ?p ?o ?g. }
- W3126124476 endingPage "026011" @default.
- W3126124476 startingPage "026011" @default.
- W3126124476 abstract "Objective. Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices directly with their thoughts. This work aims to improve robustness and decoding accuracy that currently become major challenges in the clinical translation of intracortical BMIs.Approach. We propose entire spiking activity (ESA)-an envelope of spiking activity that can be extracted by a simple, threshold-less, and automated technique-as the input signal. We couple ESA with deep learning-based decoding algorithm that uses quasi-recurrent neural network (QRNN) architecture. We evaluate comprehensively the performance of ESA-driven QRNN decoder for decoding hand kinematics from neural signals chronically recorded from the primary motor cortex area of three non-human primates performing different tasks.Main results. Our proposed method yields consistently higher decoding performance than any other combinations of the input signal and decoding algorithm previously reported across long-term recording sessions. It can sustain high decoding performance even when removing spikes from the raw signals, when using the different number of channels, and when using a smaller amount of training data.Significance. Overall results demonstrate exceptionally high decoding accuracy and chronic robustness, which is highly desirable given it is an unresolved challenge in BMIs." @default.
- W3126124476 created "2021-02-01" @default.
- W3126124476 creator A5011406031 @default.
- W3126124476 creator A5017596402 @default.
- W3126124476 creator A5041150785 @default.
- W3126124476 date "2021-02-26" @default.
- W3126124476 modified "2023-10-17" @default.
- W3126124476 title "Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning" @default.
- W3126124476 cites W1065075183 @default.
- W3126124476 cites W1437335841 @default.
- W3126124476 cites W1689711448 @default.
- W3126124476 cites W1719220832 @default.
- W3126124476 cites W1850752598 @default.
- W3126124476 cites W1904639934 @default.
- W3126124476 cites W1963881761 @default.
- W3126124476 cites W1964491684 @default.
- W3126124476 cites W1965546777 @default.
- W3126124476 cites W1972122710 @default.
- W3126124476 cites W1978997151 @default.
- W3126124476 cites W1980586936 @default.
- W3126124476 cites W1983634702 @default.
- W3126124476 cites W1985279342 @default.
- W3126124476 cites W1987164297 @default.
- W3126124476 cites W1987580357 @default.
- W3126124476 cites W1989700973 @default.
- W3126124476 cites W1999169980 @default.
- W3126124476 cites W2005617065 @default.
- W3126124476 cites W2007495909 @default.
- W3126124476 cites W2009664245 @default.
- W3126124476 cites W2010411128 @default.
- W3126124476 cites W2012924135 @default.
- W3126124476 cites W2013186737 @default.
- W3126124476 cites W2015783376 @default.
- W3126124476 cites W2016937413 @default.
- W3126124476 cites W2023739715 @default.
- W3126124476 cites W2029932697 @default.
- W3126124476 cites W2033144847 @default.
- W3126124476 cites W2037773230 @default.
- W3126124476 cites W2040212171 @default.
- W3126124476 cites W2041248708 @default.
- W3126124476 cites W2050984397 @default.
- W3126124476 cites W2053625664 @default.
- W3126124476 cites W2062317132 @default.
- W3126124476 cites W2064675550 @default.
- W3126124476 cites W2068904707 @default.
- W3126124476 cites W2076063813 @default.
- W3126124476 cites W2085319761 @default.
- W3126124476 cites W2086398476 @default.
- W3126124476 cites W2087704839 @default.
- W3126124476 cites W2094125104 @default.
- W3126124476 cites W2102286276 @default.
- W3126124476 cites W2104137141 @default.
- W3126124476 cites W2113853842 @default.
- W3126124476 cites W2114004602 @default.
- W3126124476 cites W2121300806 @default.
- W3126124476 cites W2123487311 @default.
- W3126124476 cites W2127252652 @default.
- W3126124476 cites W2129649469 @default.
- W3126124476 cites W2131003346 @default.
- W3126124476 cites W2137266901 @default.
- W3126124476 cites W2144910141 @default.
- W3126124476 cites W2149331527 @default.
- W3126124476 cites W2153156720 @default.
- W3126124476 cites W2166422604 @default.
- W3126124476 cites W2169357265 @default.
- W3126124476 cites W2170780622 @default.
- W3126124476 cites W2180595655 @default.
- W3126124476 cites W2206316479 @default.
- W3126124476 cites W2238324461 @default.
- W3126124476 cites W2243428647 @default.
- W3126124476 cites W2272545495 @default.
- W3126124476 cites W2281087329 @default.
- W3126124476 cites W2307566930 @default.
- W3126124476 cites W2341256599 @default.
- W3126124476 cites W2425730193 @default.
- W3126124476 cites W2488501279 @default.
- W3126124476 cites W2512047842 @default.
- W3126124476 cites W2538079766 @default.
- W3126124476 cites W2556174952 @default.
- W3126124476 cites W2561535255 @default.
- W3126124476 cites W2603380332 @default.
- W3126124476 cites W2626218520 @default.
- W3126124476 cites W2771318405 @default.
- W3126124476 cites W2790017360 @default.
- W3126124476 cites W2795897352 @default.
- W3126124476 cites W2798162494 @default.
- W3126124476 cites W2801702694 @default.
- W3126124476 cites W2803657903 @default.
- W3126124476 cites W2885394324 @default.
- W3126124476 cites W2889310796 @default.
- W3126124476 cites W2890122878 @default.
- W3126124476 cites W2898282183 @default.
- W3126124476 cites W2914983183 @default.
- W3126124476 cites W2919115771 @default.
- W3126124476 cites W2940161606 @default.
- W3126124476 cites W2949938118 @default.
- W3126124476 cites W3046749939 @default.
- W3126124476 doi "https://doi.org/10.1088/1741-2552/abde8a" @default.