Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126180147> ?p ?o ?g. }
- W3126180147 abstract "Wind energy is a rapidly growing industry in Turkey. Wind power potential studies revealed that the most promising region for electricity generation is the western part of Turkey. Wind speed forecasting is necessary for power systems because of the intermittent nature of wind. Thus, accurate forecasting of wind power is recognized as a major contribution to reliable wind power integration. This paper assesses the performance of the weather research forecasting (WRF) model for wind speed and wind direction predictions up to 72 h ahead. The wind speeds and wind directions are evaluated based on the mean absolute error (MAE). Evaluations were also performed seasonally. Moreover, in order to improve the WRF simulations, a multi-input–single output artificial neural network (ANN) approach is applied to both wind speeds of the WRF model and wind power estimates, which are estimated from the wind speeds of the WRF model by using a power curve for the Soma wind power plant. Traditional error metrics were used for validations using wind tower mast data installed nearby the wind farm. The results from up to 72 h forecast horizon show that the WRF model slightly overpredicts the wind speeds. Wind speed predictions by the WRF model are found highly depending on the season, location, and wind direction. The model is also able to reproduce wind directions except for low wind speeds. Large MAEs are found for the winds less than 5 m/s. The performance of the WRF model for wind power prediction decreases with the increasing runtime. Root mean square error and normalized root mean square error (nRMSE) in wind powers range in between 123–261 kW and 13%–32% without performing the ANN approach, respectively. The improvement of the ANN depends on the forecast horizon, season, and location of turbine groups, as well as its application on either the wind speed outputs of the WRF model or wind power estimations. The ANN significantly improves the WRF at large forecast horizons for wind power estimations, for which it gives better results in the summer and reaches 29% improvement for summer on average for nRMSE. On the other hand, ANN adjusts the wind speed outputs of the model better than that of wind power estimations. For instance, the nRMSE is approximately 13% for 24 h winter wind speed simulations of the WRF for the turbine groups G1 and G4, after ANN adjustment. The ANN improves the results better for turbine group 1, because of less complexity of this group in the direction of prevailing wind. The evaluation of the ANN suggests that the approach can be used for improving the performance of the wind power forecast for this power plant." @default.
- W3126180147 created "2021-02-15" @default.
- W3126180147 creator A5013118153 @default.
- W3126180147 creator A5018191307 @default.
- W3126180147 creator A5045159471 @default.
- W3126180147 creator A5051484932 @default.
- W3126180147 creator A5055522493 @default.
- W3126180147 creator A5057105881 @default.
- W3126180147 creator A5074752936 @default.
- W3126180147 creator A5078445481 @default.
- W3126180147 creator A5087265226 @default.
- W3126180147 date "2021-01-01" @default.
- W3126180147 modified "2023-10-17" @default.
- W3126180147 title "Short term wind energy resource prediction using WRF model for a location in western part of Turkey" @default.
- W3126180147 cites W1828747659 @default.
- W3126180147 cites W1931170178 @default.
- W3126180147 cites W1946238955 @default.
- W3126180147 cites W1973480201 @default.
- W3126180147 cites W1981977224 @default.
- W3126180147 cites W1984515575 @default.
- W3126180147 cites W1994170512 @default.
- W3126180147 cites W1995357105 @default.
- W3126180147 cites W1996662918 @default.
- W3126180147 cites W2006126499 @default.
- W3126180147 cites W2010719769 @default.
- W3126180147 cites W2019188397 @default.
- W3126180147 cites W2023815899 @default.
- W3126180147 cites W2024566318 @default.
- W3126180147 cites W2028979275 @default.
- W3126180147 cites W2064841506 @default.
- W3126180147 cites W2066552072 @default.
- W3126180147 cites W2066920522 @default.
- W3126180147 cites W2067306257 @default.
- W3126180147 cites W2070716160 @default.
- W3126180147 cites W2078936307 @default.
- W3126180147 cites W2079631764 @default.
- W3126180147 cites W2087070363 @default.
- W3126180147 cites W2102436016 @default.
- W3126180147 cites W2113536687 @default.
- W3126180147 cites W2218265095 @default.
- W3126180147 cites W2256578114 @default.
- W3126180147 cites W2344974383 @default.
- W3126180147 cites W2539003180 @default.
- W3126180147 cites W2571215720 @default.
- W3126180147 cites W2605972243 @default.
- W3126180147 cites W2731442669 @default.
- W3126180147 cites W2769013472 @default.
- W3126180147 cites W3151024709 @default.
- W3126180147 doi "https://doi.org/10.1063/5.0026391" @default.
- W3126180147 hasPublicationYear "2021" @default.
- W3126180147 type Work @default.
- W3126180147 sameAs 3126180147 @default.
- W3126180147 citedByCount "5" @default.
- W3126180147 countsByYear W31261801472022 @default.
- W3126180147 countsByYear W31261801472023 @default.
- W3126180147 crossrefType "journal-article" @default.
- W3126180147 hasAuthorship W3126180147A5013118153 @default.
- W3126180147 hasAuthorship W3126180147A5018191307 @default.
- W3126180147 hasAuthorship W3126180147A5045159471 @default.
- W3126180147 hasAuthorship W3126180147A5051484932 @default.
- W3126180147 hasAuthorship W3126180147A5055522493 @default.
- W3126180147 hasAuthorship W3126180147A5057105881 @default.
- W3126180147 hasAuthorship W3126180147A5074752936 @default.
- W3126180147 hasAuthorship W3126180147A5078445481 @default.
- W3126180147 hasAuthorship W3126180147A5087265226 @default.
- W3126180147 hasConcept C107775477 @default.
- W3126180147 hasConcept C118536763 @default.
- W3126180147 hasConcept C119599485 @default.
- W3126180147 hasConcept C121332964 @default.
- W3126180147 hasConcept C127413603 @default.
- W3126180147 hasConcept C133204551 @default.
- W3126180147 hasConcept C153294291 @default.
- W3126180147 hasConcept C154718420 @default.
- W3126180147 hasConcept C161067210 @default.
- W3126180147 hasConcept C163258240 @default.
- W3126180147 hasConcept C205649164 @default.
- W3126180147 hasConcept C2781084341 @default.
- W3126180147 hasConcept C39432304 @default.
- W3126180147 hasConcept C62520636 @default.
- W3126180147 hasConcept C78600449 @default.
- W3126180147 hasConcept C82313973 @default.
- W3126180147 hasConcept C89227174 @default.
- W3126180147 hasConceptScore W3126180147C107775477 @default.
- W3126180147 hasConceptScore W3126180147C118536763 @default.
- W3126180147 hasConceptScore W3126180147C119599485 @default.
- W3126180147 hasConceptScore W3126180147C121332964 @default.
- W3126180147 hasConceptScore W3126180147C127413603 @default.
- W3126180147 hasConceptScore W3126180147C133204551 @default.
- W3126180147 hasConceptScore W3126180147C153294291 @default.
- W3126180147 hasConceptScore W3126180147C154718420 @default.
- W3126180147 hasConceptScore W3126180147C161067210 @default.
- W3126180147 hasConceptScore W3126180147C163258240 @default.
- W3126180147 hasConceptScore W3126180147C205649164 @default.
- W3126180147 hasConceptScore W3126180147C2781084341 @default.
- W3126180147 hasConceptScore W3126180147C39432304 @default.
- W3126180147 hasConceptScore W3126180147C62520636 @default.
- W3126180147 hasConceptScore W3126180147C78600449 @default.
- W3126180147 hasConceptScore W3126180147C82313973 @default.
- W3126180147 hasConceptScore W3126180147C89227174 @default.
- W3126180147 hasIssue "1" @default.