Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126184927> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3126184927 abstract "Deep learning based algorithms are used in various pattern recognition tasks, including character recognition. Convolutional Neural Network (CNN) is effectively implemented for character recognition and is one of the best performing deep learning models. CNN can be used for character recognition directly or it can be used for extracting features in the character recognition process. Implementation of a feature extraction method using CNN autoencoder for MODI script character recognition is discussed in the paper. The extracted features are then subjected to Support Vector Machine (SVM) for the purpose of classification. The On-the-fly data augmentation method is used to add variability and generalization of the data set. MODI Script is an ancient Indian script and was used for writing Marathi until 1950. Various libraries and temples in India and abroad have a large collection of MODI documents. Character recognition related research of MODI script is still in infancy and research and development is necessary to extract the information from MODI manuscripts stored in various libraries. The performance of the proposed method, which uses CNN autoencoder as a feature extractor and an SVM based classifier gives very high accuracy and is better compared to the most accurate MODI character recognition method reported so far." @default.
- W3126184927 created "2021-02-15" @default.
- W3126184927 creator A5000781628 @default.
- W3126184927 creator A5069693636 @default.
- W3126184927 date "2020-10-23" @default.
- W3126184927 modified "2023-10-17" @default.
- W3126184927 title "Handwritten Character Recognition of MODI Script using Convolutional Neural Network Based Feature Extraction Method and Support Vector Machine Classifier" @default.
- W3126184927 cites W1703897136 @default.
- W3126184927 cites W1978426462 @default.
- W3126184927 cites W2044943596 @default.
- W3126184927 cites W2100495367 @default.
- W3126184927 cites W2124537004 @default.
- W3126184927 cites W2160815625 @default.
- W3126184927 cites W2163922914 @default.
- W3126184927 cites W2243923037 @default.
- W3126184927 cites W2767909427 @default.
- W3126184927 cites W2883657838 @default.
- W3126184927 cites W2894026361 @default.
- W3126184927 cites W3003658648 @default.
- W3126184927 cites W4205947740 @default.
- W3126184927 cites W4231109964 @default.
- W3126184927 doi "https://doi.org/10.1109/icsip49896.2020.9339435" @default.
- W3126184927 hasPublicationYear "2020" @default.
- W3126184927 type Work @default.
- W3126184927 sameAs 3126184927 @default.
- W3126184927 citedByCount "10" @default.
- W3126184927 countsByYear W31261849272021 @default.
- W3126184927 countsByYear W31261849272022 @default.
- W3126184927 countsByYear W31261849272023 @default.
- W3126184927 crossrefType "proceedings-article" @default.
- W3126184927 hasAuthorship W3126184927A5000781628 @default.
- W3126184927 hasAuthorship W3126184927A5069693636 @default.
- W3126184927 hasConcept C101738243 @default.
- W3126184927 hasConcept C108583219 @default.
- W3126184927 hasConcept C115961682 @default.
- W3126184927 hasConcept C121144440 @default.
- W3126184927 hasConcept C12267149 @default.
- W3126184927 hasConcept C153180895 @default.
- W3126184927 hasConcept C154945302 @default.
- W3126184927 hasConcept C175202392 @default.
- W3126184927 hasConcept C2524010 @default.
- W3126184927 hasConcept C2780861071 @default.
- W3126184927 hasConcept C2987247673 @default.
- W3126184927 hasConcept C32717103 @default.
- W3126184927 hasConcept C33923547 @default.
- W3126184927 hasConcept C41008148 @default.
- W3126184927 hasConcept C44868376 @default.
- W3126184927 hasConcept C50644808 @default.
- W3126184927 hasConcept C52622490 @default.
- W3126184927 hasConcept C81363708 @default.
- W3126184927 hasConcept C95623464 @default.
- W3126184927 hasConceptScore W3126184927C101738243 @default.
- W3126184927 hasConceptScore W3126184927C108583219 @default.
- W3126184927 hasConceptScore W3126184927C115961682 @default.
- W3126184927 hasConceptScore W3126184927C121144440 @default.
- W3126184927 hasConceptScore W3126184927C12267149 @default.
- W3126184927 hasConceptScore W3126184927C153180895 @default.
- W3126184927 hasConceptScore W3126184927C154945302 @default.
- W3126184927 hasConceptScore W3126184927C175202392 @default.
- W3126184927 hasConceptScore W3126184927C2524010 @default.
- W3126184927 hasConceptScore W3126184927C2780861071 @default.
- W3126184927 hasConceptScore W3126184927C2987247673 @default.
- W3126184927 hasConceptScore W3126184927C32717103 @default.
- W3126184927 hasConceptScore W3126184927C33923547 @default.
- W3126184927 hasConceptScore W3126184927C41008148 @default.
- W3126184927 hasConceptScore W3126184927C44868376 @default.
- W3126184927 hasConceptScore W3126184927C50644808 @default.
- W3126184927 hasConceptScore W3126184927C52622490 @default.
- W3126184927 hasConceptScore W3126184927C81363708 @default.
- W3126184927 hasConceptScore W3126184927C95623464 @default.
- W3126184927 hasLocation W31261849271 @default.
- W3126184927 hasOpenAccess W3126184927 @default.
- W3126184927 hasPrimaryLocation W31261849271 @default.
- W3126184927 hasRelatedWork W1484865932 @default.
- W3126184927 hasRelatedWork W2099867646 @default.
- W3126184927 hasRelatedWork W2103712237 @default.
- W3126184927 hasRelatedWork W2110452885 @default.
- W3126184927 hasRelatedWork W2132131403 @default.
- W3126184927 hasRelatedWork W2143570073 @default.
- W3126184927 hasRelatedWork W2165550102 @default.
- W3126184927 hasRelatedWork W2626428275 @default.
- W3126184927 hasRelatedWork W2794177739 @default.
- W3126184927 hasRelatedWork W2811459303 @default.
- W3126184927 isParatext "false" @default.
- W3126184927 isRetracted "false" @default.
- W3126184927 magId "3126184927" @default.
- W3126184927 workType "article" @default.