Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126218382> ?p ?o ?g. }
- W3126218382 endingPage "58" @default.
- W3126218382 startingPage "35" @default.
- W3126218382 abstract "An important goal in automation is to create machines that are able to better understand human cognitive states so that the overall system efficiency can be enhanced. For example, an advanced driver assistance system (ADAS) equipped with the ability to understand the cognitive state of human will enhance the overall safety of the roads. Similar scenarios can be found in numerous emerging industries, such as smart-manufacturing, robotics, virtual reality, video games, media, online learning, and entertainment. In order to achieve such an intelligent automation system involving humans we need to develop approaches that can estimate cognitive load through non-invasive means and to develop control strategies for real-time system adaptation with humans. The focus of this chapter is on presenting some recent advances in cognitive load estimation based on non-invasive measures, such as pupil diameter, eye-gaze patterns, eye-blink patterns, heart rate, and heart-rate variability. Finally, we present some results from an experiment where the pupil diameter data, among other measures, was collected for varying cognitive difficulty levels." @default.
- W3126218382 created "2021-02-15" @default.
- W3126218382 creator A5051596510 @default.
- W3126218382 creator A5055306060 @default.
- W3126218382 creator A5081576297 @default.
- W3126218382 date "2021-01-01" @default.
- W3126218382 modified "2023-10-18" @default.
- W3126218382 title "Cognitive load estimation for adaptive human–machine system automation" @default.
- W3126218382 cites W1944676744 @default.
- W3126218382 cites W1968903111 @default.
- W3126218382 cites W1980467157 @default.
- W3126218382 cites W1980877068 @default.
- W3126218382 cites W1996986259 @default.
- W3126218382 cites W1997070835 @default.
- W3126218382 cites W1998977696 @default.
- W3126218382 cites W2008939134 @default.
- W3126218382 cites W2010015254 @default.
- W3126218382 cites W2026320048 @default.
- W3126218382 cites W2026890068 @default.
- W3126218382 cites W2035546708 @default.
- W3126218382 cites W2043876105 @default.
- W3126218382 cites W2050426605 @default.
- W3126218382 cites W2053778972 @default.
- W3126218382 cites W2061539227 @default.
- W3126218382 cites W2062242288 @default.
- W3126218382 cites W2066785847 @default.
- W3126218382 cites W2067207462 @default.
- W3126218382 cites W2069706646 @default.
- W3126218382 cites W2073845485 @default.
- W3126218382 cites W2090598091 @default.
- W3126218382 cites W2095898844 @default.
- W3126218382 cites W2118762351 @default.
- W3126218382 cites W2119291948 @default.
- W3126218382 cites W2120913149 @default.
- W3126218382 cites W2122311608 @default.
- W3126218382 cites W2141936912 @default.
- W3126218382 cites W2152905082 @default.
- W3126218382 cites W2154200694 @default.
- W3126218382 cites W2156559440 @default.
- W3126218382 cites W2186851868 @default.
- W3126218382 cites W2206805401 @default.
- W3126218382 cites W2296682773 @default.
- W3126218382 cites W2395290268 @default.
- W3126218382 cites W2600226089 @default.
- W3126218382 cites W2609239033 @default.
- W3126218382 cites W2617187393 @default.
- W3126218382 cites W269273188 @default.
- W3126218382 cites W2754889145 @default.
- W3126218382 cites W2760919610 @default.
- W3126218382 cites W2765706707 @default.
- W3126218382 cites W2792206136 @default.
- W3126218382 cites W2890656423 @default.
- W3126218382 cites W2920646873 @default.
- W3126218382 cites W2931905656 @default.
- W3126218382 cites W2969077043 @default.
- W3126218382 cites W3008349902 @default.
- W3126218382 cites W3008527517 @default.
- W3126218382 doi "https://doi.org/10.1016/b978-0-12-822314-7.00007-9" @default.
- W3126218382 hasPublicationYear "2021" @default.
- W3126218382 type Work @default.
- W3126218382 sameAs 3126218382 @default.
- W3126218382 citedByCount "8" @default.
- W3126218382 countsByYear W31262183822021 @default.
- W3126218382 countsByYear W31262183822022 @default.
- W3126218382 countsByYear W31262183822023 @default.
- W3126218382 crossrefType "book-chapter" @default.
- W3126218382 hasAuthorship W3126218382A5051596510 @default.
- W3126218382 hasAuthorship W3126218382A5055306060 @default.
- W3126218382 hasAuthorship W3126218382A5081576297 @default.
- W3126218382 hasConcept C107457646 @default.
- W3126218382 hasConcept C115901376 @default.
- W3126218382 hasConcept C119857082 @default.
- W3126218382 hasConcept C127413603 @default.
- W3126218382 hasConcept C139807058 @default.
- W3126218382 hasConcept C154945302 @default.
- W3126218382 hasConcept C15744967 @default.
- W3126218382 hasConcept C169760540 @default.
- W3126218382 hasConcept C169900460 @default.
- W3126218382 hasConcept C2779916870 @default.
- W3126218382 hasConcept C41008148 @default.
- W3126218382 hasConcept C44154836 @default.
- W3126218382 hasConcept C56461940 @default.
- W3126218382 hasConcept C61641136 @default.
- W3126218382 hasConcept C78519656 @default.
- W3126218382 hasConceptScore W3126218382C107457646 @default.
- W3126218382 hasConceptScore W3126218382C115901376 @default.
- W3126218382 hasConceptScore W3126218382C119857082 @default.
- W3126218382 hasConceptScore W3126218382C127413603 @default.
- W3126218382 hasConceptScore W3126218382C139807058 @default.
- W3126218382 hasConceptScore W3126218382C154945302 @default.
- W3126218382 hasConceptScore W3126218382C15744967 @default.
- W3126218382 hasConceptScore W3126218382C169760540 @default.
- W3126218382 hasConceptScore W3126218382C169900460 @default.
- W3126218382 hasConceptScore W3126218382C2779916870 @default.
- W3126218382 hasConceptScore W3126218382C41008148 @default.
- W3126218382 hasConceptScore W3126218382C44154836 @default.
- W3126218382 hasConceptScore W3126218382C56461940 @default.
- W3126218382 hasConceptScore W3126218382C61641136 @default.