Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126238986> ?p ?o ?g. }
- W3126238986 endingPage "69009" @default.
- W3126238986 startingPage "69002" @default.
- W3126238986 abstract "In an increasingly open electricity market environment, short-term load forecasting (STLF) can ensure the power grid to operate safely and stably, reduce resource waste, power dispatching, and provide technical support for demand-side response. Recently, with the rapid development of demand side response, accurate load forecasting can better provide demand side incentive for regional load of prosumer groups. Traditional machine learning prediction and time series prediction based on statistics failed to consider the non-linear relationship between various input features, resulting in the inability to accurately predict load changes. Recently, with the rapid development of deep learning, extensive research has been carried out in the field of load forecasting. On this basis, a feature selection algorithm based on random forest is first used in this paper to provide a basis for the selection of the input features of the load forecasting model. After the input features are selected, a hybrid neural network STLF algorithm based on multi-model fusion is proposed, of which the main structure of the hybrid neural network is composed of convolutional neural network and bidirectional gated recurrent unit (CNN-BiGRU). The input data is obtained by using long sliding time windows of different steps, then multiple CNN-BiGRU models are trained respectively. The forecasting results of multiple models are averaged to get the final forecasting load value. The load datasets come from a region in New Zealand and a region in Zhejiang, China, are used as load forecast examples. Finally, a variety of load forecasting algorithms are introduced for comparison. The experimental results show that our method has a higher accuracy than comparison models." @default.
- W3126238986 created "2021-02-15" @default.
- W3126238986 creator A5008470804 @default.
- W3126238986 creator A5020049212 @default.
- W3126238986 creator A5045314683 @default.
- W3126238986 creator A5052514920 @default.
- W3126238986 creator A5069307874 @default.
- W3126238986 creator A5071123678 @default.
- W3126238986 creator A5085066185 @default.
- W3126238986 date "2021-01-01" @default.
- W3126238986 modified "2023-10-10" @default.
- W3126238986 title "Multi-Model Fusion Short-Term Load Forecasting Based on Random Forest Feature Selection and Hybrid Neural Network" @default.
- W3126238986 cites W1711412747 @default.
- W3126238986 cites W2597866042 @default.
- W3126238986 cites W2754252319 @default.
- W3126238986 cites W2771018930 @default.
- W3126238986 cites W2793486043 @default.
- W3126238986 cites W2805797750 @default.
- W3126238986 cites W2888449021 @default.
- W3126238986 cites W2888917438 @default.
- W3126238986 cites W2889165715 @default.
- W3126238986 cites W2899494475 @default.
- W3126238986 cites W2900680591 @default.
- W3126238986 cites W2954123905 @default.
- W3126238986 cites W2955563491 @default.
- W3126238986 cites W2956157098 @default.
- W3126238986 cites W2965516457 @default.
- W3126238986 cites W2969929892 @default.
- W3126238986 cites W2998823444 @default.
- W3126238986 cites W3020366001 @default.
- W3126238986 cites W3021727993 @default.
- W3126238986 cites W3026588890 @default.
- W3126238986 cites W3034758534 @default.
- W3126238986 cites W3043685378 @default.
- W3126238986 cites W3090661556 @default.
- W3126238986 cites W3093663925 @default.
- W3126238986 cites W3094761984 @default.
- W3126238986 doi "https://doi.org/10.1109/access.2021.3051337" @default.
- W3126238986 hasPublicationYear "2021" @default.
- W3126238986 type Work @default.
- W3126238986 sameAs 3126238986 @default.
- W3126238986 citedByCount "40" @default.
- W3126238986 countsByYear W31262389862021 @default.
- W3126238986 countsByYear W31262389862022 @default.
- W3126238986 countsByYear W31262389862023 @default.
- W3126238986 crossrefType "journal-article" @default.
- W3126238986 hasAuthorship W3126238986A5008470804 @default.
- W3126238986 hasAuthorship W3126238986A5020049212 @default.
- W3126238986 hasAuthorship W3126238986A5045314683 @default.
- W3126238986 hasAuthorship W3126238986A5052514920 @default.
- W3126238986 hasAuthorship W3126238986A5069307874 @default.
- W3126238986 hasAuthorship W3126238986A5071123678 @default.
- W3126238986 hasAuthorship W3126238986A5085066185 @default.
- W3126238986 hasBestOaLocation W31262389861 @default.
- W3126238986 hasConcept C10558101 @default.
- W3126238986 hasConcept C119599485 @default.
- W3126238986 hasConcept C119857082 @default.
- W3126238986 hasConcept C12267149 @default.
- W3126238986 hasConcept C124101348 @default.
- W3126238986 hasConcept C127413603 @default.
- W3126238986 hasConcept C138885662 @default.
- W3126238986 hasConcept C148483581 @default.
- W3126238986 hasConcept C154945302 @default.
- W3126238986 hasConcept C169258074 @default.
- W3126238986 hasConcept C193809577 @default.
- W3126238986 hasConcept C2776401178 @default.
- W3126238986 hasConcept C41008148 @default.
- W3126238986 hasConcept C41895202 @default.
- W3126238986 hasConcept C42475967 @default.
- W3126238986 hasConcept C50644808 @default.
- W3126238986 hasConcept C81363708 @default.
- W3126238986 hasConceptScore W3126238986C10558101 @default.
- W3126238986 hasConceptScore W3126238986C119599485 @default.
- W3126238986 hasConceptScore W3126238986C119857082 @default.
- W3126238986 hasConceptScore W3126238986C12267149 @default.
- W3126238986 hasConceptScore W3126238986C124101348 @default.
- W3126238986 hasConceptScore W3126238986C127413603 @default.
- W3126238986 hasConceptScore W3126238986C138885662 @default.
- W3126238986 hasConceptScore W3126238986C148483581 @default.
- W3126238986 hasConceptScore W3126238986C154945302 @default.
- W3126238986 hasConceptScore W3126238986C169258074 @default.
- W3126238986 hasConceptScore W3126238986C193809577 @default.
- W3126238986 hasConceptScore W3126238986C2776401178 @default.
- W3126238986 hasConceptScore W3126238986C41008148 @default.
- W3126238986 hasConceptScore W3126238986C41895202 @default.
- W3126238986 hasConceptScore W3126238986C42475967 @default.
- W3126238986 hasConceptScore W3126238986C50644808 @default.
- W3126238986 hasConceptScore W3126238986C81363708 @default.
- W3126238986 hasLocation W31262389861 @default.
- W3126238986 hasLocation W31262389862 @default.
- W3126238986 hasOpenAccess W3126238986 @default.
- W3126238986 hasPrimaryLocation W31262389861 @default.
- W3126238986 hasRelatedWork W2985924212 @default.
- W3126238986 hasRelatedWork W2996933976 @default.
- W3126238986 hasRelatedWork W3034132578 @default.
- W3126238986 hasRelatedWork W3122308606 @default.
- W3126238986 hasRelatedWork W3195168932 @default.
- W3126238986 hasRelatedWork W4288767684 @default.