Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126255718> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3126255718 endingPage "205846012199029" @default.
- W3126255718 startingPage "205846012199029" @default.
- W3126255718 abstract "The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community.To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques.Studies published in 2010-2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables.The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005).Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets." @default.
- W3126255718 created "2021-02-15" @default.
- W3126255718 creator A5034553528 @default.
- W3126255718 date "2021-02-01" @default.
- W3126255718 modified "2023-10-16" @default.
- W3126255718 title "Reviewing the relationship between machines and radiology: the application of artificial intelligence" @default.
- W3126255718 cites W1584579659 @default.
- W3126255718 cites W2025609751 @default.
- W3126255718 cites W2069816479 @default.
- W3126255718 cites W2103381850 @default.
- W3126255718 cites W2116531017 @default.
- W3126255718 cites W2123504579 @default.
- W3126255718 cites W2153081307 @default.
- W3126255718 cites W2190746225 @default.
- W3126255718 cites W2427838904 @default.
- W3126255718 cites W2520541801 @default.
- W3126255718 cites W2560685203 @default.
- W3126255718 cites W2582555581 @default.
- W3126255718 cites W2588978745 @default.
- W3126255718 cites W2765803301 @default.
- W3126255718 cites W2766803980 @default.
- W3126255718 cites W2767142522 @default.
- W3126255718 cites W2767236661 @default.
- W3126255718 cites W2768491633 @default.
- W3126255718 cites W2776284598 @default.
- W3126255718 cites W2785645041 @default.
- W3126255718 cites W2785863263 @default.
- W3126255718 cites W2786204509 @default.
- W3126255718 cites W2788633781 @default.
- W3126255718 cites W2790265810 @default.
- W3126255718 cites W2794518994 @default.
- W3126255718 cites W2795116242 @default.
- W3126255718 cites W2810349670 @default.
- W3126255718 cites W2896202491 @default.
- W3126255718 cites W2896817483 @default.
- W3126255718 cites W2903408278 @default.
- W3126255718 cites W2906598409 @default.
- W3126255718 cites W2919356958 @default.
- W3126255718 cites W2971356145 @default.
- W3126255718 doi "https://doi.org/10.1177/2058460121990296" @default.
- W3126255718 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7876935" @default.
- W3126255718 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33623711" @default.
- W3126255718 hasPublicationYear "2021" @default.
- W3126255718 type Work @default.
- W3126255718 sameAs 3126255718 @default.
- W3126255718 citedByCount "3" @default.
- W3126255718 countsByYear W31262557182021 @default.
- W3126255718 countsByYear W31262557182022 @default.
- W3126255718 crossrefType "journal-article" @default.
- W3126255718 hasAuthorship W3126255718A5034553528 @default.
- W3126255718 hasBestOaLocation W31262557181 @default.
- W3126255718 hasConcept C108583219 @default.
- W3126255718 hasConcept C119857082 @default.
- W3126255718 hasConcept C126838900 @default.
- W3126255718 hasConcept C154945302 @default.
- W3126255718 hasConcept C2522767166 @default.
- W3126255718 hasConcept C41008148 @default.
- W3126255718 hasConcept C71924100 @default.
- W3126255718 hasConcept C91998498 @default.
- W3126255718 hasConceptScore W3126255718C108583219 @default.
- W3126255718 hasConceptScore W3126255718C119857082 @default.
- W3126255718 hasConceptScore W3126255718C126838900 @default.
- W3126255718 hasConceptScore W3126255718C154945302 @default.
- W3126255718 hasConceptScore W3126255718C2522767166 @default.
- W3126255718 hasConceptScore W3126255718C41008148 @default.
- W3126255718 hasConceptScore W3126255718C71924100 @default.
- W3126255718 hasConceptScore W3126255718C91998498 @default.
- W3126255718 hasIssue "2" @default.
- W3126255718 hasLocation W31262557181 @default.
- W3126255718 hasLocation W31262557182 @default.
- W3126255718 hasLocation W31262557183 @default.
- W3126255718 hasOpenAccess W3126255718 @default.
- W3126255718 hasPrimaryLocation W31262557181 @default.
- W3126255718 hasRelatedWork W3014300295 @default.
- W3126255718 hasRelatedWork W3126255718 @default.
- W3126255718 hasRelatedWork W3164822677 @default.
- W3126255718 hasRelatedWork W4223943233 @default.
- W3126255718 hasRelatedWork W4225161397 @default.
- W3126255718 hasRelatedWork W4250304930 @default.
- W3126255718 hasRelatedWork W4309045103 @default.
- W3126255718 hasRelatedWork W4312200629 @default.
- W3126255718 hasRelatedWork W4360585206 @default.
- W3126255718 hasRelatedWork W4364306694 @default.
- W3126255718 hasVolume "10" @default.
- W3126255718 isParatext "false" @default.
- W3126255718 isRetracted "false" @default.
- W3126255718 magId "3126255718" @default.
- W3126255718 workType "article" @default.