Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126260096> ?p ?o ?g. }
- W3126260096 endingPage "122523" @default.
- W3126260096 startingPage "122523" @default.
- W3126260096 abstract "• TGAN generated synthetic data used for first time in SFRC RC beam shear model training. • “Train on synthetic – test on real” modeling philosophy proved highly effective. • Genetic programming symbolic regression model outperformed 11 existing models. • Model feature importance analysis indicated most influential parameters on shear strength. • Proposed equation demonstrated consistency with experimental findings. The complexity of shear transfer mechanisms in steel fiber-reinforced concrete (SFRC) has motivated researchers to develop diverse empirical and soft-computing models for predicting the shear capacity of SFRC beams. Yet, such existing methods have been developed based on limited experimental databases, which makes their generalization capability uncertain. To account for the limited experimental data available, this study pioneers a novel approach based on tabular generative adversarial networks (TGAN) to generate 2000 synthetic data examples. A “train on synthetic - test on real” philosophy was adopted. Accordingly, the entire 2000 synthetic data were used for training a genetic programming-based symbolic regression (GP-SR) model to develop a shear strength equation for SFRC beams without stirrups. The model accuracy was then tested on the entire set of 309 real experimental data examples, which thus far are unknown to the model. Results show that the novel GP-SR model achieved superior predictive accuracy, outperforming eleven existing equations. Sensitivity analysis revealed that the shear-span-to-depth ratio was the most influential parameter in the proposed equation. The present study provides an enhanced predictive model for the shear capacity of SFRC beams, which should motivate further research to effectively train evolutionary algorithms using synthetic data when acquiring large and comprehensive experimental datasets is not feasible." @default.
- W3126260096 created "2021-02-15" @default.
- W3126260096 creator A5010769595 @default.
- W3126260096 creator A5076326557 @default.
- W3126260096 date "2021-04-01" @default.
- W3126260096 modified "2023-10-17" @default.
- W3126260096 title "Genetic programming based symbolic regression for shear capacity prediction of SFRC beams" @default.
- W3126260096 cites W100464641 @default.
- W3126260096 cites W1681162744 @default.
- W3126260096 cites W1968185982 @default.
- W3126260096 cites W1968965877 @default.
- W3126260096 cites W1971717977 @default.
- W3126260096 cites W1975975242 @default.
- W3126260096 cites W1980596777 @default.
- W3126260096 cites W1990777119 @default.
- W3126260096 cites W1999947866 @default.
- W3126260096 cites W2001415257 @default.
- W3126260096 cites W2010690929 @default.
- W3126260096 cites W2011580004 @default.
- W3126260096 cites W2026089652 @default.
- W3126260096 cites W2030334488 @default.
- W3126260096 cites W2040492000 @default.
- W3126260096 cites W2041557389 @default.
- W3126260096 cites W2043620469 @default.
- W3126260096 cites W2045023353 @default.
- W3126260096 cites W2050517168 @default.
- W3126260096 cites W2053593933 @default.
- W3126260096 cites W2055490791 @default.
- W3126260096 cites W2068535166 @default.
- W3126260096 cites W2071652710 @default.
- W3126260096 cites W2074156348 @default.
- W3126260096 cites W2087661061 @default.
- W3126260096 cites W2088765131 @default.
- W3126260096 cites W2091994943 @default.
- W3126260096 cites W2112947655 @default.
- W3126260096 cites W2165653116 @default.
- W3126260096 cites W2174932723 @default.
- W3126260096 cites W2221524457 @default.
- W3126260096 cites W2226228593 @default.
- W3126260096 cites W2253552378 @default.
- W3126260096 cites W2272869393 @default.
- W3126260096 cites W2295591160 @default.
- W3126260096 cites W2343420905 @default.
- W3126260096 cites W2439731354 @default.
- W3126260096 cites W2439826673 @default.
- W3126260096 cites W2479931491 @default.
- W3126260096 cites W2524603796 @default.
- W3126260096 cites W2591892645 @default.
- W3126260096 cites W2616288406 @default.
- W3126260096 cites W2624092661 @default.
- W3126260096 cites W2777817369 @default.
- W3126260096 cites W2808049367 @default.
- W3126260096 cites W2888086104 @default.
- W3126260096 cites W2895154065 @default.
- W3126260096 cites W2897701309 @default.
- W3126260096 cites W2907223767 @default.
- W3126260096 cites W2963290659 @default.
- W3126260096 cites W2979770056 @default.
- W3126260096 cites W2981982251 @default.
- W3126260096 cites W3001133293 @default.
- W3126260096 cites W3038033549 @default.
- W3126260096 cites W3045575733 @default.
- W3126260096 cites W3100444376 @default.
- W3126260096 cites W4241328317 @default.
- W3126260096 cites W4298136904 @default.
- W3126260096 doi "https://doi.org/10.1016/j.conbuildmat.2021.122523" @default.
- W3126260096 hasPublicationYear "2021" @default.
- W3126260096 type Work @default.
- W3126260096 sameAs 3126260096 @default.
- W3126260096 citedByCount "23" @default.
- W3126260096 countsByYear W31262600962021 @default.
- W3126260096 countsByYear W31262600962022 @default.
- W3126260096 countsByYear W31262600962023 @default.
- W3126260096 crossrefType "journal-article" @default.
- W3126260096 hasAuthorship W3126260096A5010769595 @default.
- W3126260096 hasAuthorship W3126260096A5076326557 @default.
- W3126260096 hasConcept C110332635 @default.
- W3126260096 hasConcept C11413529 @default.
- W3126260096 hasConcept C119857082 @default.
- W3126260096 hasConcept C127313418 @default.
- W3126260096 hasConcept C127413603 @default.
- W3126260096 hasConcept C154945302 @default.
- W3126260096 hasConcept C16910744 @default.
- W3126260096 hasConcept C199360897 @default.
- W3126260096 hasConcept C2776400721 @default.
- W3126260096 hasConcept C41008148 @default.
- W3126260096 hasConcept C5900021 @default.
- W3126260096 hasConcept C66938386 @default.
- W3126260096 hasConcept C96035792 @default.
- W3126260096 hasConceptScore W3126260096C110332635 @default.
- W3126260096 hasConceptScore W3126260096C11413529 @default.
- W3126260096 hasConceptScore W3126260096C119857082 @default.
- W3126260096 hasConceptScore W3126260096C127313418 @default.
- W3126260096 hasConceptScore W3126260096C127413603 @default.
- W3126260096 hasConceptScore W3126260096C154945302 @default.
- W3126260096 hasConceptScore W3126260096C16910744 @default.
- W3126260096 hasConceptScore W3126260096C199360897 @default.
- W3126260096 hasConceptScore W3126260096C2776400721 @default.