Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126320871> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3126320871 abstract "Author(s): Kachuee, Mohammad | Advisor(s): Sarrafzadeh, Majid | Abstract: Classical approaches to machine learning sought to improve the efficiency and accuracy of prediction but often failed to account for the costs associated with the collection of data and expert labels. This shortcoming is particularly limiting in the smart health setting, where accurate classification often requires an invasive level of information querying. Furthermore, in domains such as medical diagnosis, appropriate data should be collected based on a scientific hypothesis, and ground-truth labels may only be provided by highly trained domain experts. Additionally, in many studies, informative features are not scientifically predetermined, and usually, there are many information sources that can be considered as hypothetical relevant features that including all of them is not practical.In order to address these issues, we suggest novel end-to-end solutions considering different aspects of a real-world learning system. Specifically, we consider feature acquisition, labeling, model training, and prediction at test-time as different aspects of a system that tries to achieve the goal of making accurate predictions efficiently. In this paradigm, information is acquired incrementally based on the value it provides and the cost that should be paid for acquiring it. In this thesis, we explore dynamic and context-aware information acquisition techniques to collect the right piece of information at the right time. Additionally, as inference using incomplete data is an inevitable part of such methods, we propose a novel approach to not only impute missing values but also to capture prediction uncertainties." @default.
- W3126320871 created "2021-02-15" @default.
- W3126320871 creator A5037374629 @default.
- W3126320871 date "2020-01-01" @default.
- W3126320871 modified "2023-09-27" @default.
- W3126320871 title "Opportunistic Learning: Algorithms and Methods for Cost-Sensitive and Context-Aware Learning" @default.
- W3126320871 hasPublicationYear "2020" @default.
- W3126320871 type Work @default.
- W3126320871 sameAs 3126320871 @default.
- W3126320871 citedByCount "0" @default.
- W3126320871 crossrefType "journal-article" @default.
- W3126320871 hasAuthorship W3126320871A5037374629 @default.
- W3126320871 hasConcept C119857082 @default.
- W3126320871 hasConcept C127413603 @default.
- W3126320871 hasConcept C134306372 @default.
- W3126320871 hasConcept C138885662 @default.
- W3126320871 hasConcept C151730666 @default.
- W3126320871 hasConcept C154945302 @default.
- W3126320871 hasConcept C188198153 @default.
- W3126320871 hasConcept C2776214188 @default.
- W3126320871 hasConcept C2776401178 @default.
- W3126320871 hasConcept C2779343474 @default.
- W3126320871 hasConcept C33923547 @default.
- W3126320871 hasConcept C36503486 @default.
- W3126320871 hasConcept C41008148 @default.
- W3126320871 hasConcept C41895202 @default.
- W3126320871 hasConcept C78519656 @default.
- W3126320871 hasConcept C86803240 @default.
- W3126320871 hasConceptScore W3126320871C119857082 @default.
- W3126320871 hasConceptScore W3126320871C127413603 @default.
- W3126320871 hasConceptScore W3126320871C134306372 @default.
- W3126320871 hasConceptScore W3126320871C138885662 @default.
- W3126320871 hasConceptScore W3126320871C151730666 @default.
- W3126320871 hasConceptScore W3126320871C154945302 @default.
- W3126320871 hasConceptScore W3126320871C188198153 @default.
- W3126320871 hasConceptScore W3126320871C2776214188 @default.
- W3126320871 hasConceptScore W3126320871C2776401178 @default.
- W3126320871 hasConceptScore W3126320871C2779343474 @default.
- W3126320871 hasConceptScore W3126320871C33923547 @default.
- W3126320871 hasConceptScore W3126320871C36503486 @default.
- W3126320871 hasConceptScore W3126320871C41008148 @default.
- W3126320871 hasConceptScore W3126320871C41895202 @default.
- W3126320871 hasConceptScore W3126320871C78519656 @default.
- W3126320871 hasConceptScore W3126320871C86803240 @default.
- W3126320871 hasLocation W31263208711 @default.
- W3126320871 hasOpenAccess W3126320871 @default.
- W3126320871 hasPrimaryLocation W31263208711 @default.
- W3126320871 hasRelatedWork W2187130308 @default.
- W3126320871 hasRelatedWork W2233365998 @default.
- W3126320871 hasRelatedWork W2240456204 @default.
- W3126320871 hasRelatedWork W2325684928 @default.
- W3126320871 hasRelatedWork W2625431422 @default.
- W3126320871 hasRelatedWork W2783201451 @default.
- W3126320871 hasRelatedWork W2905382854 @default.
- W3126320871 hasRelatedWork W2908944636 @default.
- W3126320871 hasRelatedWork W2913385702 @default.
- W3126320871 hasRelatedWork W2953023293 @default.
- W3126320871 hasRelatedWork W2971403594 @default.
- W3126320871 hasRelatedWork W2976879737 @default.
- W3126320871 hasRelatedWork W3001821705 @default.
- W3126320871 hasRelatedWork W3131964772 @default.
- W3126320871 hasRelatedWork W3159917720 @default.
- W3126320871 hasRelatedWork W3207066661 @default.
- W3126320871 hasRelatedWork W3207849004 @default.
- W3126320871 hasRelatedWork W3209575142 @default.
- W3126320871 hasRelatedWork W827319959 @default.
- W3126320871 hasRelatedWork W205887534 @default.
- W3126320871 isParatext "false" @default.
- W3126320871 isRetracted "false" @default.
- W3126320871 magId "3126320871" @default.
- W3126320871 workType "article" @default.