Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126376218> ?p ?o ?g. }
- W3126376218 endingPage "15" @default.
- W3126376218 startingPage "15" @default.
- W3126376218 abstract "Nowadays, supplying demand load and maintaining sustainable energy are important issues that have created many challenges in power systems. In these types of problems, short-term load forecasting has been proposed as one of the management and energy supply modes in power systems. In this paper, after reviewing various load forecasting techniques, a deep learning method called bidirectional long short-term memory (Bi-LSTM) is presented for short-term load forecasting in a microgrid. By collecting relevant features available in the input data at the training stage, it is shown that the proposed procedure enjoys important properties, such as its great ability to process time series data. A microgrid in rural Sub-Saharan Africa, including household and commercial loads, was selected as the case study. The parameters affecting the formation of household and commercial load profiles are considered as input variables, and the total household and commercial load profiles of the microgrid are considered as the target. The Bi-LSTM network is trained by input variables to forecast the microgrid load on an hourly basis by recognizing the consumption pattern. Various performance evaluation indicators such as the correlation coefficient (R), mean squared error (MSE), and root mean squared error (RMSE) are utilized to analyze the forecast results. In addition, in a comparative approach, the performance of the proposed method is compared and evaluated with other methods used in similar studies. The results presented for the training phase show an accuracy of R = 99.81% for the Bi-LSTM network. The test and load forecasting stage are performed by the Bi-STLM network, with an accuracy of R = 99.34% and forecasting errors of MSE = 0.1042 and RMSE = 0.3243. The results confirm the high performance of the proposed Bi-LSTM technique, with a high correlation coefficient when compared to other methods used for short-term load forecasting." @default.
- W3126376218 created "2021-02-15" @default.
- W3126376218 creator A5016541935 @default.
- W3126376218 creator A5023954410 @default.
- W3126376218 creator A5042769539 @default.
- W3126376218 creator A5051164485 @default.
- W3126376218 creator A5069883451 @default.
- W3126376218 date "2021-02-03" @default.
- W3126376218 modified "2023-10-18" @default.
- W3126376218 title "Deep Learning-Assisted Short-Term Load Forecasting for Sustainable Management of Energy in Microgrid" @default.
- W3126376218 cites W1991151501 @default.
- W3126376218 cites W2064675550 @default.
- W3126376218 cites W2067847508 @default.
- W3126376218 cites W2076063813 @default.
- W3126376218 cites W2107878631 @default.
- W3126376218 cites W2203748183 @default.
- W3126376218 cites W2553716752 @default.
- W3126376218 cites W2740849855 @default.
- W3126376218 cites W2749953238 @default.
- W3126376218 cites W2797025128 @default.
- W3126376218 cites W2810444707 @default.
- W3126376218 cites W2819793456 @default.
- W3126376218 cites W2834100271 @default.
- W3126376218 cites W2895861596 @default.
- W3126376218 cites W2902252637 @default.
- W3126376218 cites W2910849319 @default.
- W3126376218 cites W2912412749 @default.
- W3126376218 cites W2942231644 @default.
- W3126376218 cites W2944835245 @default.
- W3126376218 cites W2945815269 @default.
- W3126376218 cites W2960560113 @default.
- W3126376218 cites W2964577622 @default.
- W3126376218 cites W2965399094 @default.
- W3126376218 cites W3024458572 @default.
- W3126376218 cites W3025296821 @default.
- W3126376218 cites W3033591971 @default.
- W3126376218 cites W3033785644 @default.
- W3126376218 cites W3043435009 @default.
- W3126376218 cites W3056480821 @default.
- W3126376218 cites W3080166177 @default.
- W3126376218 cites W3081576544 @default.
- W3126376218 cites W3089040363 @default.
- W3126376218 cites W3094688803 @default.
- W3126376218 cites W3096162502 @default.
- W3126376218 cites W3108551027 @default.
- W3126376218 cites W3112946719 @default.
- W3126376218 cites W3119642604 @default.
- W3126376218 cites W3127177343 @default.
- W3126376218 doi "https://doi.org/10.3390/inventions6010015" @default.
- W3126376218 hasPublicationYear "2021" @default.
- W3126376218 type Work @default.
- W3126376218 sameAs 3126376218 @default.
- W3126376218 citedByCount "26" @default.
- W3126376218 countsByYear W31263762182021 @default.
- W3126376218 countsByYear W31263762182022 @default.
- W3126376218 countsByYear W31263762182023 @default.
- W3126376218 crossrefType "journal-article" @default.
- W3126376218 hasAuthorship W3126376218A5016541935 @default.
- W3126376218 hasAuthorship W3126376218A5023954410 @default.
- W3126376218 hasAuthorship W3126376218A5042769539 @default.
- W3126376218 hasAuthorship W3126376218A5051164485 @default.
- W3126376218 hasAuthorship W3126376218A5069883451 @default.
- W3126376218 hasBestOaLocation W31263762181 @default.
- W3126376218 hasConcept C105795698 @default.
- W3126376218 hasConcept C121332964 @default.
- W3126376218 hasConcept C127413603 @default.
- W3126376218 hasConcept C139945424 @default.
- W3126376218 hasConcept C154945302 @default.
- W3126376218 hasConcept C186370098 @default.
- W3126376218 hasConcept C200601418 @default.
- W3126376218 hasConcept C2775924081 @default.
- W3126376218 hasConcept C2776784348 @default.
- W3126376218 hasConcept C33923547 @default.
- W3126376218 hasConcept C41008148 @default.
- W3126376218 hasConcept C61797465 @default.
- W3126376218 hasConcept C62520636 @default.
- W3126376218 hasConcept C7817414 @default.
- W3126376218 hasConceptScore W3126376218C105795698 @default.
- W3126376218 hasConceptScore W3126376218C121332964 @default.
- W3126376218 hasConceptScore W3126376218C127413603 @default.
- W3126376218 hasConceptScore W3126376218C139945424 @default.
- W3126376218 hasConceptScore W3126376218C154945302 @default.
- W3126376218 hasConceptScore W3126376218C186370098 @default.
- W3126376218 hasConceptScore W3126376218C200601418 @default.
- W3126376218 hasConceptScore W3126376218C2775924081 @default.
- W3126376218 hasConceptScore W3126376218C2776784348 @default.
- W3126376218 hasConceptScore W3126376218C33923547 @default.
- W3126376218 hasConceptScore W3126376218C41008148 @default.
- W3126376218 hasConceptScore W3126376218C61797465 @default.
- W3126376218 hasConceptScore W3126376218C62520636 @default.
- W3126376218 hasConceptScore W3126376218C7817414 @default.
- W3126376218 hasFunder F4320334779 @default.
- W3126376218 hasIssue "1" @default.
- W3126376218 hasLocation W31263762181 @default.
- W3126376218 hasOpenAccess W3126376218 @default.
- W3126376218 hasPrimaryLocation W31263762181 @default.
- W3126376218 hasRelatedWork W2053954704 @default.
- W3126376218 hasRelatedWork W2127175087 @default.