Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126411399> ?p ?o ?g. }
- W3126411399 endingPage "2229" @default.
- W3126411399 startingPage "2218" @default.
- W3126411399 abstract "Automatic image annotation is one of the research fields helping to extract the meaning of images, which aims at the production of a set of semantic annotations for an image to help better present the concept. Over the past few decades, researchers have developed many approaches for automatic image annotation. Nevertheless, previous studies have not fully accounted for visual features and annotated features. Therefore, it is still possible to achieve a better annotation performance by combining visual and annotated information. In this study, we aim to associate multiple semantic tags with a given image. In particular, we detect how to obtain the image annotation by utilizing visual and annotated information. To take advantage of visual information, we first designed a modified neural network method to acquire the features of the image content. In addition, to obtain the annotated features, we exploit an aggregated network embedding approach that consists of annotation embedding, social embedding, profile embedding, and semantic embedding. Finally, to produce an accurate image annotation, we integrate the two aforementioned methods, that is, combining the visual and annotated information, to build a unified cooperative training framework. The experimental results on three real-world datasets clarify that our presented method is superior to the currently popular image annotation approaches." @default.
- W3126411399 created "2021-02-15" @default.
- W3126411399 creator A5002341443 @default.
- W3126411399 creator A5020502092 @default.
- W3126411399 creator A5060634791 @default.
- W3126411399 creator A5062988242 @default.
- W3126411399 creator A5063891979 @default.
- W3126411399 creator A5080152413 @default.
- W3126411399 date "2022-01-01" @default.
- W3126411399 modified "2023-10-15" @default.
- W3126411399 title "Automatic Tagging by Leveraging Visual and Annotated Features in Social Media" @default.
- W3126411399 cites W1666447063 @default.
- W3126411399 cites W1908139891 @default.
- W3126411399 cites W1966941896 @default.
- W3126411399 cites W2007972815 @default.
- W3126411399 cites W2025276985 @default.
- W3126411399 cites W2046665279 @default.
- W3126411399 cites W2050398567 @default.
- W3126411399 cites W2062797058 @default.
- W3126411399 cites W2066440363 @default.
- W3126411399 cites W2069662295 @default.
- W3126411399 cites W2073749068 @default.
- W3126411399 cites W2087501015 @default.
- W3126411399 cites W2094444465 @default.
- W3126411399 cites W2097709839 @default.
- W3126411399 cites W2107473756 @default.
- W3126411399 cites W2135166986 @default.
- W3126411399 cites W2146024151 @default.
- W3126411399 cites W2148484209 @default.
- W3126411399 cites W2155893237 @default.
- W3126411399 cites W2172299630 @default.
- W3126411399 cites W2182524050 @default.
- W3126411399 cites W2205224283 @default.
- W3126411399 cites W2292154513 @default.
- W3126411399 cites W2294281382 @default.
- W3126411399 cites W2318862362 @default.
- W3126411399 cites W2393319904 @default.
- W3126411399 cites W2408291668 @default.
- W3126411399 cites W2463955103 @default.
- W3126411399 cites W2464503653 @default.
- W3126411399 cites W2472025395 @default.
- W3126411399 cites W2492101991 @default.
- W3126411399 cites W2504170810 @default.
- W3126411399 cites W2509173212 @default.
- W3126411399 cites W2510977945 @default.
- W3126411399 cites W2519936666 @default.
- W3126411399 cites W2536305071 @default.
- W3126411399 cites W2537796836 @default.
- W3126411399 cites W2550542701 @default.
- W3126411399 cites W2552639984 @default.
- W3126411399 cites W2565744846 @default.
- W3126411399 cites W2742272831 @default.
- W3126411399 cites W2743320454 @default.
- W3126411399 cites W2743969099 @default.
- W3126411399 cites W2767752208 @default.
- W3126411399 cites W2769923218 @default.
- W3126411399 cites W2792234394 @default.
- W3126411399 cites W2793406320 @default.
- W3126411399 cites W2798383927 @default.
- W3126411399 cites W2799873835 @default.
- W3126411399 cites W2802433760 @default.
- W3126411399 cites W2802644759 @default.
- W3126411399 cites W2803471635 @default.
- W3126411399 cites W2808858103 @default.
- W3126411399 cites W2884849775 @default.
- W3126411399 cites W2899989643 @default.
- W3126411399 cites W2913932916 @default.
- W3126411399 cites W2954721224 @default.
- W3126411399 cites W2962967183 @default.
- W3126411399 cites W2963162313 @default.
- W3126411399 cites W2963513598 @default.
- W3126411399 cites W2963745697 @default.
- W3126411399 cites W2963844113 @default.
- W3126411399 cites W2964281014 @default.
- W3126411399 cites W2969531873 @default.
- W3126411399 cites W2981525000 @default.
- W3126411399 cites W2982106364 @default.
- W3126411399 cites W3104069527 @default.
- W3126411399 cites W3104097132 @default.
- W3126411399 cites W3105705953 @default.
- W3126411399 cites W4300560153 @default.
- W3126411399 doi "https://doi.org/10.1109/tmm.2021.3055037" @default.
- W3126411399 hasPublicationYear "2022" @default.
- W3126411399 type Work @default.
- W3126411399 sameAs 3126411399 @default.
- W3126411399 citedByCount "2" @default.
- W3126411399 countsByYear W31264113992022 @default.
- W3126411399 countsByYear W31264113992023 @default.
- W3126411399 crossrefType "journal-article" @default.
- W3126411399 hasAuthorship W3126411399A5002341443 @default.
- W3126411399 hasAuthorship W3126411399A5020502092 @default.
- W3126411399 hasAuthorship W3126411399A5060634791 @default.
- W3126411399 hasAuthorship W3126411399A5062988242 @default.
- W3126411399 hasAuthorship W3126411399A5063891979 @default.
- W3126411399 hasAuthorship W3126411399A5080152413 @default.
- W3126411399 hasConcept C115961682 @default.
- W3126411399 hasConcept C153180895 @default.
- W3126411399 hasConcept C154945302 @default.