Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126417070> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3126417070 abstract "In this study, we propose a hybrid weakly supervised segmentation learning approach which employs a ship detection network and a novel segmentation process. First, two robust training strategies, creating soft labels and adding an extra regularization about the predicted probability of ship existence are proposed to train the ship detection network, which can alleviate the phenomenon of DNNS over fitting noisy and missing annotations. Then, OTSU is used to get Gaussian-g <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>A</sub> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sup> mixture model-driven results on the parameter maps which are estimated by the VAE network and data-driven results on the original ROI data. By merging the two kinds of results, we can take the advantage of pixel-level information which can consider more structural details but is easily influenced by the speckle noise and the advantage of model-level information which can smooth the effect of the speckle noise. Our results demonstrate the accuracy of our algorithms regarding experiments on real Gaofen-3 SAR data which includes different complex sea conditions." @default.
- W3126417070 created "2021-02-15" @default.
- W3126417070 creator A5014916744 @default.
- W3126417070 creator A5019619940 @default.
- W3126417070 creator A5030436858 @default.
- W3126417070 creator A5051753801 @default.
- W3126417070 creator A5059560149 @default.
- W3126417070 date "2020-11-06" @default.
- W3126417070 modified "2023-10-16" @default.
- W3126417070 title "Weakly Supervised SAR Ship Segmentation Based on Variational Gaussian G(A) (0) Mixture Model A Learning" @default.
- W3126417070 cites W1959608418 @default.
- W3126417070 cites W1979968728 @default.
- W3126417070 cites W2011247596 @default.
- W3126417070 cites W2042844016 @default.
- W3126417070 cites W2048611331 @default.
- W3126417070 cites W2067031041 @default.
- W3126417070 cites W2075586094 @default.
- W3126417070 cites W2080111352 @default.
- W3126417070 cites W2146123543 @default.
- W3126417070 cites W2158347164 @default.
- W3126417070 cites W2183341477 @default.
- W3126417070 cites W2480460461 @default.
- W3126417070 cites W2597117158 @default.
- W3126417070 cites W2632026579 @default.
- W3126417070 cites W2783266131 @default.
- W3126417070 cites W2787004668 @default.
- W3126417070 cites W2900218412 @default.
- W3126417070 cites W2904480641 @default.
- W3126417070 cites W2928870406 @default.
- W3126417070 cites W2955454611 @default.
- W3126417070 doi "https://doi.org/10.1109/cac51589.2020.9326319" @default.
- W3126417070 hasPublicationYear "2020" @default.
- W3126417070 type Work @default.
- W3126417070 sameAs 3126417070 @default.
- W3126417070 citedByCount "0" @default.
- W3126417070 crossrefType "proceedings-article" @default.
- W3126417070 hasAuthorship W3126417070A5014916744 @default.
- W3126417070 hasAuthorship W3126417070A5019619940 @default.
- W3126417070 hasAuthorship W3126417070A5030436858 @default.
- W3126417070 hasAuthorship W3126417070A5051753801 @default.
- W3126417070 hasAuthorship W3126417070A5059560149 @default.
- W3126417070 hasConcept C115961682 @default.
- W3126417070 hasConcept C121332964 @default.
- W3126417070 hasConcept C153180895 @default.
- W3126417070 hasConcept C154945302 @default.
- W3126417070 hasConcept C160633673 @default.
- W3126417070 hasConcept C163716315 @default.
- W3126417070 hasConcept C2776135515 @default.
- W3126417070 hasConcept C41008148 @default.
- W3126417070 hasConcept C50644808 @default.
- W3126417070 hasConcept C62520636 @default.
- W3126417070 hasConcept C89600930 @default.
- W3126417070 hasConcept C99498987 @default.
- W3126417070 hasConceptScore W3126417070C115961682 @default.
- W3126417070 hasConceptScore W3126417070C121332964 @default.
- W3126417070 hasConceptScore W3126417070C153180895 @default.
- W3126417070 hasConceptScore W3126417070C154945302 @default.
- W3126417070 hasConceptScore W3126417070C160633673 @default.
- W3126417070 hasConceptScore W3126417070C163716315 @default.
- W3126417070 hasConceptScore W3126417070C2776135515 @default.
- W3126417070 hasConceptScore W3126417070C41008148 @default.
- W3126417070 hasConceptScore W3126417070C50644808 @default.
- W3126417070 hasConceptScore W3126417070C62520636 @default.
- W3126417070 hasConceptScore W3126417070C89600930 @default.
- W3126417070 hasConceptScore W3126417070C99498987 @default.
- W3126417070 hasFunder F4320321001 @default.
- W3126417070 hasFunder F4320335787 @default.
- W3126417070 hasLocation W31264170701 @default.
- W3126417070 hasOpenAccess W3126417070 @default.
- W3126417070 hasPrimaryLocation W31264170701 @default.
- W3126417070 hasRelatedWork W1965781815 @default.
- W3126417070 hasRelatedWork W2006443041 @default.
- W3126417070 hasRelatedWork W2136485282 @default.
- W3126417070 hasRelatedWork W2394462683 @default.
- W3126417070 hasRelatedWork W2510758617 @default.
- W3126417070 hasRelatedWork W2546871836 @default.
- W3126417070 hasRelatedWork W2547748020 @default.
- W3126417070 hasRelatedWork W2907667403 @default.
- W3126417070 hasRelatedWork W3039022597 @default.
- W3126417070 hasRelatedWork W4206076898 @default.
- W3126417070 isParatext "false" @default.
- W3126417070 isRetracted "false" @default.
- W3126417070 magId "3126417070" @default.
- W3126417070 workType "article" @default.