Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126429103> ?p ?o ?g. }
- W3126429103 endingPage "109090" @default.
- W3126429103 startingPage "109090" @default.
- W3126429103 abstract "Rolling bearing is a vital part of the machinery, whose remaining useful life (RUL) estimation plays a critical role in ensuring the safety and maintenance decision-making. However, in most industrial applications, it is difficult to obtain run-to-failure data under complex operating conditions, which is inefficient for deep learning approaches. To solve the above problem, a new approach using transfer depth-wise separable convolution recurrent network (TDSCRN) for RUL estimation of bearing is presented. A novel prediction model so-called depth-wise separable convolution recurrent network (DSCRN) is designed and trained by the source-domain dataset. The parameters and model of DSCRN are transferred to the target-domain, and then TDSCRN is obtained for RUL estimation task. Two public run-to-failure datasets are used to validate the performance of the presented method. The results indicate that this framework can improve estimation accuracy and robustness in complex operating conditions." @default.
- W3126429103 created "2021-02-15" @default.
- W3126429103 creator A5024883425 @default.
- W3126429103 creator A5047977577 @default.
- W3126429103 creator A5088588691 @default.
- W3126429103 date "2021-05-01" @default.
- W3126429103 modified "2023-10-06" @default.
- W3126429103 title "Transfer remaining useful life estimation of bearing using depth-wise separable convolution recurrent network" @default.
- W3126429103 cites W1498436455 @default.
- W3126429103 cites W1941544736 @default.
- W3126429103 cites W1986907389 @default.
- W3126429103 cites W2009789653 @default.
- W3126429103 cites W2022621390 @default.
- W3126429103 cites W2053443947 @default.
- W3126429103 cites W2201689600 @default.
- W3126429103 cites W2286877141 @default.
- W3126429103 cites W2339542100 @default.
- W3126429103 cites W2471161958 @default.
- W3126429103 cites W2556013418 @default.
- W3126429103 cites W2591055632 @default.
- W3126429103 cites W2763583057 @default.
- W3126429103 cites W2793062918 @default.
- W3126429103 cites W2801396593 @default.
- W3126429103 cites W2808622270 @default.
- W3126429103 cites W2897557170 @default.
- W3126429103 cites W2898375427 @default.
- W3126429103 cites W2900438754 @default.
- W3126429103 cites W2908441554 @default.
- W3126429103 cites W2914360004 @default.
- W3126429103 cites W2925209208 @default.
- W3126429103 cites W2945413072 @default.
- W3126429103 cites W2961350108 @default.
- W3126429103 cites W2990226288 @default.
- W3126429103 cites W2994902374 @default.
- W3126429103 cites W2997308049 @default.
- W3126429103 cites W2998227980 @default.
- W3126429103 cites W2999342951 @default.
- W3126429103 cites W2999606367 @default.
- W3126429103 cites W3002750555 @default.
- W3126429103 cites W3035343087 @default.
- W3126429103 cites W3041440607 @default.
- W3126429103 doi "https://doi.org/10.1016/j.measurement.2021.109090" @default.
- W3126429103 hasPublicationYear "2021" @default.
- W3126429103 type Work @default.
- W3126429103 sameAs 3126429103 @default.
- W3126429103 citedByCount "21" @default.
- W3126429103 countsByYear W31264291032021 @default.
- W3126429103 countsByYear W31264291032022 @default.
- W3126429103 countsByYear W31264291032023 @default.
- W3126429103 crossrefType "journal-article" @default.
- W3126429103 hasAuthorship W3126429103A5024883425 @default.
- W3126429103 hasAuthorship W3126429103A5047977577 @default.
- W3126429103 hasAuthorship W3126429103A5088588691 @default.
- W3126429103 hasConcept C104317684 @default.
- W3126429103 hasConcept C11413529 @default.
- W3126429103 hasConcept C124101348 @default.
- W3126429103 hasConcept C126255220 @default.
- W3126429103 hasConcept C127413603 @default.
- W3126429103 hasConcept C134306372 @default.
- W3126429103 hasConcept C154945302 @default.
- W3126429103 hasConcept C185592680 @default.
- W3126429103 hasConcept C199978012 @default.
- W3126429103 hasConcept C200601418 @default.
- W3126429103 hasConcept C201995342 @default.
- W3126429103 hasConcept C2780451532 @default.
- W3126429103 hasConcept C33923547 @default.
- W3126429103 hasConcept C36503486 @default.
- W3126429103 hasConcept C41008148 @default.
- W3126429103 hasConcept C45347329 @default.
- W3126429103 hasConcept C50644808 @default.
- W3126429103 hasConcept C55493867 @default.
- W3126429103 hasConcept C63479239 @default.
- W3126429103 hasConcept C70710897 @default.
- W3126429103 hasConcept C96250715 @default.
- W3126429103 hasConceptScore W3126429103C104317684 @default.
- W3126429103 hasConceptScore W3126429103C11413529 @default.
- W3126429103 hasConceptScore W3126429103C124101348 @default.
- W3126429103 hasConceptScore W3126429103C126255220 @default.
- W3126429103 hasConceptScore W3126429103C127413603 @default.
- W3126429103 hasConceptScore W3126429103C134306372 @default.
- W3126429103 hasConceptScore W3126429103C154945302 @default.
- W3126429103 hasConceptScore W3126429103C185592680 @default.
- W3126429103 hasConceptScore W3126429103C199978012 @default.
- W3126429103 hasConceptScore W3126429103C200601418 @default.
- W3126429103 hasConceptScore W3126429103C201995342 @default.
- W3126429103 hasConceptScore W3126429103C2780451532 @default.
- W3126429103 hasConceptScore W3126429103C33923547 @default.
- W3126429103 hasConceptScore W3126429103C36503486 @default.
- W3126429103 hasConceptScore W3126429103C41008148 @default.
- W3126429103 hasConceptScore W3126429103C45347329 @default.
- W3126429103 hasConceptScore W3126429103C50644808 @default.
- W3126429103 hasConceptScore W3126429103C55493867 @default.
- W3126429103 hasConceptScore W3126429103C63479239 @default.
- W3126429103 hasConceptScore W3126429103C70710897 @default.
- W3126429103 hasConceptScore W3126429103C96250715 @default.
- W3126429103 hasFunder F4320321001 @default.
- W3126429103 hasFunder F4320334010 @default.
- W3126429103 hasLocation W31264291031 @default.