Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126472920> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3126472920 abstract "How to decrease the number of electroencephalogram (EEG) record channels, and acquire the optimal electrodes to perform EEG signals analysis, are of extremely importance in developing and promoting highly available Brain-Computer Interface (BCI). In this paper, we design an EEG channel optimization model, named Domain Adversarial Sparse Learning model (DASL), to perform fatigue state detection with minimal and optimal EEG electrodes. DASL composes of Sparse Learning (SL), Domain Adversarial Neural Networks (DANN) and Generative Adversarial Networks (GAN). Herein, SL is used to find the optimal EEG channels through selecting key features from the source domain, these key features are then used to determine fatigue state by DANN across subjects, GAN aims at improving the robustness for our proposed model. Experimental results show DASL outperforms other traditional machine learning methods in the classification performance of mental state tasks under the condition of optimal and minimal EEG electrodes." @default.
- W3126472920 created "2021-02-15" @default.
- W3126472920 creator A5005134079 @default.
- W3126472920 creator A5016326689 @default.
- W3126472920 creator A5030666905 @default.
- W3126472920 creator A5050326305 @default.
- W3126472920 creator A5067364716 @default.
- W3126472920 creator A5085186808 @default.
- W3126472920 date "2020-12-16" @default.
- W3126472920 modified "2023-09-25" @default.
- W3126472920 title "Cross-subject EEG Channel Optimization by Domain Adversarial Sparse Learning Model" @default.
- W3126472920 cites W1731081199 @default.
- W3126472920 cites W2038120455 @default.
- W3126472920 cites W2103276799 @default.
- W3126472920 cites W2109860557 @default.
- W3126472920 cites W2142280324 @default.
- W3126472920 cites W2149925546 @default.
- W3126472920 cites W2152119085 @default.
- W3126472920 cites W2192406549 @default.
- W3126472920 cites W2328087580 @default.
- W3126472920 cites W2548472041 @default.
- W3126472920 cites W2593768305 @default.
- W3126472920 cites W2883597459 @default.
- W3126472920 cites W2908578648 @default.
- W3126472920 cites W2912782554 @default.
- W3126472920 cites W3156207536 @default.
- W3126472920 doi "https://doi.org/10.1109/bibm49941.2020.9313436" @default.
- W3126472920 hasPublicationYear "2020" @default.
- W3126472920 type Work @default.
- W3126472920 sameAs 3126472920 @default.
- W3126472920 citedByCount "2" @default.
- W3126472920 countsByYear W31264729202023 @default.
- W3126472920 crossrefType "proceedings-article" @default.
- W3126472920 hasAuthorship W3126472920A5005134079 @default.
- W3126472920 hasAuthorship W3126472920A5016326689 @default.
- W3126472920 hasAuthorship W3126472920A5030666905 @default.
- W3126472920 hasAuthorship W3126472920A5050326305 @default.
- W3126472920 hasAuthorship W3126472920A5067364716 @default.
- W3126472920 hasAuthorship W3126472920A5085186808 @default.
- W3126472920 hasConcept C104317684 @default.
- W3126472920 hasConcept C108583219 @default.
- W3126472920 hasConcept C118552586 @default.
- W3126472920 hasConcept C119857082 @default.
- W3126472920 hasConcept C134306372 @default.
- W3126472920 hasConcept C153180895 @default.
- W3126472920 hasConcept C154945302 @default.
- W3126472920 hasConcept C15744967 @default.
- W3126472920 hasConcept C173201364 @default.
- W3126472920 hasConcept C185592680 @default.
- W3126472920 hasConcept C26517878 @default.
- W3126472920 hasConcept C2988773926 @default.
- W3126472920 hasConcept C33923547 @default.
- W3126472920 hasConcept C36503486 @default.
- W3126472920 hasConcept C37736160 @default.
- W3126472920 hasConcept C38652104 @default.
- W3126472920 hasConcept C41008148 @default.
- W3126472920 hasConcept C522805319 @default.
- W3126472920 hasConcept C55493867 @default.
- W3126472920 hasConcept C63479239 @default.
- W3126472920 hasConceptScore W3126472920C104317684 @default.
- W3126472920 hasConceptScore W3126472920C108583219 @default.
- W3126472920 hasConceptScore W3126472920C118552586 @default.
- W3126472920 hasConceptScore W3126472920C119857082 @default.
- W3126472920 hasConceptScore W3126472920C134306372 @default.
- W3126472920 hasConceptScore W3126472920C153180895 @default.
- W3126472920 hasConceptScore W3126472920C154945302 @default.
- W3126472920 hasConceptScore W3126472920C15744967 @default.
- W3126472920 hasConceptScore W3126472920C173201364 @default.
- W3126472920 hasConceptScore W3126472920C185592680 @default.
- W3126472920 hasConceptScore W3126472920C26517878 @default.
- W3126472920 hasConceptScore W3126472920C2988773926 @default.
- W3126472920 hasConceptScore W3126472920C33923547 @default.
- W3126472920 hasConceptScore W3126472920C36503486 @default.
- W3126472920 hasConceptScore W3126472920C37736160 @default.
- W3126472920 hasConceptScore W3126472920C38652104 @default.
- W3126472920 hasConceptScore W3126472920C41008148 @default.
- W3126472920 hasConceptScore W3126472920C522805319 @default.
- W3126472920 hasConceptScore W3126472920C55493867 @default.
- W3126472920 hasConceptScore W3126472920C63479239 @default.
- W3126472920 hasLocation W31264729201 @default.
- W3126472920 hasOpenAccess W3126472920 @default.
- W3126472920 hasPrimaryLocation W31264729201 @default.
- W3126472920 hasRelatedWork W3193857078 @default.
- W3126472920 hasRelatedWork W3208304128 @default.
- W3126472920 hasRelatedWork W4221150850 @default.
- W3126472920 hasRelatedWork W4223943233 @default.
- W3126472920 hasRelatedWork W4224952001 @default.
- W3126472920 hasRelatedWork W4312200629 @default.
- W3126472920 hasRelatedWork W4360585206 @default.
- W3126472920 hasRelatedWork W4364306694 @default.
- W3126472920 hasRelatedWork W4380075502 @default.
- W3126472920 hasRelatedWork W4382463655 @default.
- W3126472920 isParatext "false" @default.
- W3126472920 isRetracted "false" @default.
- W3126472920 magId "3126472920" @default.
- W3126472920 workType "article" @default.