Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126495890> ?p ?o ?g. }
- W3126495890 abstract "We exhibit a randomized algorithm which given a square matrix A ∈ mathbbC <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n×n</sup> with ||A|| ≤ 1 and , computes with high probability an invertible V and diagonal D such that ||A-VDV <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-1</sup> || ≤ δ in O(TMM(n)log <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> (n/δ)) arithmetic operations on a floating point machine with O(log <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>4</sup> (n/δ)logn) bits of precision. The computed similarity V additionally satisfies ||V||||V <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>-1</sup> || ≤ O(n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2.5</sup> /δ). Here TMM(n) is the number of arithmetic operations required to multiply two n×n complex matrices numerically stably, known to satisfy TMM(n)=O(n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>ω+η</sup> ) for every where ω is the exponent of matrix multiplication [1]. The algorithm is a variant of the spectral bisection algorithm in numerical linear algebra [2] with a crucial Gaussian perturbation preprocessing step. Our running time is optimal up to polylogarithmic factors, in the sense that verifying that a given similarity diagonalizes a matrix requires at least matrix multiplication time. It significantly improves the previously best known provable running times of O(n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>10</sup> /δ <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> ) arithmetic operations for diagonalization of general matrices [3], and (with regards to the dependence on n) O(n <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>3</sup> ) arithmetic operations for Hermitian matrices [4], and is the first algorithm to achieve nearly matrix multiplication time for diagonalization in any model of computation (real arithmetic, rational arithmetic, or finite arithmetic). The proof rests on two new ingredients. (1) We show that adding a small complex Gaussian perturbation to any matrix splits its pseudospectrum into n small well-separated components. In particular, this implies that the eigenvalues of the perturbed matrix have a large minimum gap, a property of independent interest in random matrix theory. (2) We give a rigorous analysis of Roberts' [5] Newton iteration method for computing the sign function of a matrix in finite arithmetic, itself an open problem in numerical analysis since at least 1986 [6]. This is achieved by controlling the evolution of the pseudospectra of the iterates using a carefully chosen sequence of shrinking contour integrals in the complex plane." @default.
- W3126495890 created "2021-02-15" @default.
- W3126495890 creator A5000037196 @default.
- W3126495890 creator A5026191843 @default.
- W3126495890 creator A5064777550 @default.
- W3126495890 creator A5090566063 @default.
- W3126495890 date "2020-11-01" @default.
- W3126495890 modified "2023-09-25" @default.
- W3126495890 title "Pseudospectral Shattering, the Sign Function, and Diagonalization in Nearly Matrix Multiplication Time" @default.
- W3126495890 cites W1483804921 @default.
- W3126495890 cites W149522324 @default.
- W3126495890 cites W1878693735 @default.
- W3126495890 cites W1974755392 @default.
- W3126495890 cites W1979674329 @default.
- W3126495890 cites W1985242550 @default.
- W3126495890 cites W1987168303 @default.
- W3126495890 cites W1987631685 @default.
- W3126495890 cites W1995258411 @default.
- W3126495890 cites W1999913024 @default.
- W3126495890 cites W2005999980 @default.
- W3126495890 cites W2012062489 @default.
- W3126495890 cites W2013333913 @default.
- W3126495890 cites W2020804487 @default.
- W3126495890 cites W2022846189 @default.
- W3126495890 cites W2030220049 @default.
- W3126495890 cites W2034053794 @default.
- W3126495890 cites W2051297414 @default.
- W3126495890 cites W2052645364 @default.
- W3126495890 cites W2054266996 @default.
- W3126495890 cites W2059076129 @default.
- W3126495890 cites W2059586807 @default.
- W3126495890 cites W2091075671 @default.
- W3126495890 cites W2112145895 @default.
- W3126495890 cites W2137634211 @default.
- W3126495890 cites W2140137938 @default.
- W3126495890 cites W2144077636 @default.
- W3126495890 cites W2147348850 @default.
- W3126495890 cites W2162826883 @default.
- W3126495890 cites W2170078634 @default.
- W3126495890 cites W2275630370 @default.
- W3126495890 cites W2565903074 @default.
- W3126495890 cites W2569489637 @default.
- W3126495890 cites W2912693630 @default.
- W3126495890 cites W2964076147 @default.
- W3126495890 cites W3099472489 @default.
- W3126495890 cites W3105388035 @default.
- W3126495890 cites W3105822905 @default.
- W3126495890 cites W4289920060 @default.
- W3126495890 cites W4301491118 @default.
- W3126495890 doi "https://doi.org/10.1109/focs46700.2020.00056" @default.
- W3126495890 hasPublicationYear "2020" @default.
- W3126495890 type Work @default.
- W3126495890 sameAs 3126495890 @default.
- W3126495890 citedByCount "9" @default.
- W3126495890 countsByYear W31264958902021 @default.
- W3126495890 countsByYear W31264958902022 @default.
- W3126495890 countsByYear W31264958902023 @default.
- W3126495890 crossrefType "proceedings-article" @default.
- W3126495890 hasAuthorship W3126495890A5000037196 @default.
- W3126495890 hasAuthorship W3126495890A5026191843 @default.
- W3126495890 hasAuthorship W3126495890A5064777550 @default.
- W3126495890 hasAuthorship W3126495890A5090566063 @default.
- W3126495890 hasBestOaLocation W31264958902 @default.
- W3126495890 hasConcept C106487976 @default.
- W3126495890 hasConcept C11413529 @default.
- W3126495890 hasConcept C114614502 @default.
- W3126495890 hasConcept C118615104 @default.
- W3126495890 hasConcept C130367717 @default.
- W3126495890 hasConcept C136119220 @default.
- W3126495890 hasConcept C159985019 @default.
- W3126495890 hasConcept C192562407 @default.
- W3126495890 hasConcept C202444582 @default.
- W3126495890 hasConcept C2524010 @default.
- W3126495890 hasConcept C33923547 @default.
- W3126495890 hasConcept C94375191 @default.
- W3126495890 hasConcept C96442724 @default.
- W3126495890 hasConceptScore W3126495890C106487976 @default.
- W3126495890 hasConceptScore W3126495890C11413529 @default.
- W3126495890 hasConceptScore W3126495890C114614502 @default.
- W3126495890 hasConceptScore W3126495890C118615104 @default.
- W3126495890 hasConceptScore W3126495890C130367717 @default.
- W3126495890 hasConceptScore W3126495890C136119220 @default.
- W3126495890 hasConceptScore W3126495890C159985019 @default.
- W3126495890 hasConceptScore W3126495890C192562407 @default.
- W3126495890 hasConceptScore W3126495890C202444582 @default.
- W3126495890 hasConceptScore W3126495890C2524010 @default.
- W3126495890 hasConceptScore W3126495890C33923547 @default.
- W3126495890 hasConceptScore W3126495890C94375191 @default.
- W3126495890 hasConceptScore W3126495890C96442724 @default.
- W3126495890 hasFunder F4320306076 @default.
- W3126495890 hasLocation W31264958901 @default.
- W3126495890 hasLocation W31264958902 @default.
- W3126495890 hasOpenAccess W3126495890 @default.
- W3126495890 hasPrimaryLocation W31264958901 @default.
- W3126495890 hasRelatedWork W1500104164 @default.
- W3126495890 hasRelatedWork W1978881546 @default.
- W3126495890 hasRelatedWork W2015274931 @default.
- W3126495890 hasRelatedWork W2024401664 @default.
- W3126495890 hasRelatedWork W2030189586 @default.
- W3126495890 hasRelatedWork W2357898102 @default.