Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126588032> ?p ?o ?g. }
- W3126588032 endingPage "957" @default.
- W3126588032 startingPage "948" @default.
- W3126588032 abstract "Background: Fresh osteochondral allograft transplantation (OCA) is an effective method of treating symptomatic cartilage defects of the knee. This cartilage restoration technique involves the single-stage implantation of viable, mature hyaline cartilage into the chondral or osteochondral lesion. Predictive models for reaching the clinically meaningful outcome among patients undergoing OCA for cartilage lesions of the knee remain under investigation. Purpose: To apply machine learning to determine which preoperative variables are predictive for achieving the minimal clinically important difference (MCID) and substantial clinical benefit (SCB) at 1 and 2 years after OCA for cartilage lesions of the knee. Study Design: Case-control study; Level of evidence, 3. Methods: Data were analyzed for patients who underwent OCA of the knee by 2 high-volume fellowship-trained cartilage surgeons before May 1, 2018. The International Knee Documentation Committee questionnaire (IKDC), Knee Outcome Survey–Activities of Daily Living (KOS-ADL), and Mental Component (MCS) and Physical Component (PCS) Summaries of the 36-Item Short Form Health Survey (SF-36) were administered preoperatively and at 1 and 2 years postoperatively. A total of 84 predictive models were created using 7 unique architectures to detect achievement of the MCID for each of the 4 outcome measures and the SCB for the IKDC and KOS-ADL at both time points. Data inputted into the models included previous and concomitant surgical history, laterality, sex, age, body mass index (BMI), intraoperative findings, and patient-reported outcome measures (PROMs). Shapley Additive Explanations (SHAP) analysis identified predictors of reaching the MCID and SCB. Results: Of the 185 patients who underwent OCA for the knee and met eligibility criteria from an institutional cartilage registry, 135 (73%) patients were available for the 1-year follow-up and 153 (83%) patients for the 2-year follow-up. In predicting outcomes after OCA in terms of the IKDC, KOS-ADL, MCS, and PCS at 1 and 2 years, areas under the receiver operating characteristic curve (AUCs) of the top-performing models ranged from fair (0.72) to excellent (0.94). Lower baseline mental health (MCS), higher baseline physical health (PCS) and knee function scores (KOS-ADL, IKDC Subjective), lower baseline activity demand (Marx, Cincinnati sports), worse pain symptoms (Cincinnati pain, SF-36 pain), and higher BMI were thematic predictors contributing to failure to achieve the MCID or SCB at 1 and 2 years postoperatively. Conclusion: Our machine learning models were effective in predicting outcomes and elucidating the relationships between baseline factors contributing to achieving the MCID for OCA of the knee. Patients who preoperatively report poor mental health, catastrophize pain symptoms, compensate with higher physical health and knee function, and exhibit lower activity demands are at risk for failing to reach clinically meaningful outcomes after OCA of the knee." @default.
- W3126588032 created "2021-02-15" @default.
- W3126588032 creator A5000284759 @default.
- W3126588032 creator A5005420475 @default.
- W3126588032 creator A5037872785 @default.
- W3126588032 creator A5041979810 @default.
- W3126588032 creator A5063311766 @default.
- W3126588032 creator A5065326899 @default.
- W3126588032 creator A5071766901 @default.
- W3126588032 creator A5084772398 @default.
- W3126588032 date "2021-02-08" @default.
- W3126588032 modified "2023-09-27" @default.
- W3126588032 title "Association Between Preoperative Mental Health and Clinically Meaningful Outcomes After Osteochondral Allograft for Cartilage Defects of the Knee: A Machine Learning Analysis" @default.
- W3126588032 cites W133078350 @default.
- W3126588032 cites W1819440463 @default.
- W3126588032 cites W1908920827 @default.
- W3126588032 cites W1938683852 @default.
- W3126588032 cites W1998207473 @default.
- W3126588032 cites W2061507020 @default.
- W3126588032 cites W2097456882 @default.
- W3126588032 cites W2106013910 @default.
- W3126588032 cites W2107990748 @default.
- W3126588032 cites W2109398336 @default.
- W3126588032 cites W2112946894 @default.
- W3126588032 cites W2115463158 @default.
- W3126588032 cites W2156030748 @default.
- W3126588032 cites W2158067616 @default.
- W3126588032 cites W2162217880 @default.
- W3126588032 cites W2162321417 @default.
- W3126588032 cites W2571152561 @default.
- W3126588032 cites W2620689254 @default.
- W3126588032 cites W2761350951 @default.
- W3126588032 cites W2789458937 @default.
- W3126588032 cites W2794113863 @default.
- W3126588032 cites W2803921712 @default.
- W3126588032 cites W2839109443 @default.
- W3126588032 cites W2900878088 @default.
- W3126588032 cites W2903313246 @default.
- W3126588032 cites W2944301355 @default.
- W3126588032 cites W2946475978 @default.
- W3126588032 cites W4238859033 @default.
- W3126588032 cites W4253057747 @default.
- W3126588032 doi "https://doi.org/10.1177/0363546520988021" @default.
- W3126588032 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33555931" @default.
- W3126588032 hasPublicationYear "2021" @default.
- W3126588032 type Work @default.
- W3126588032 sameAs 3126588032 @default.
- W3126588032 citedByCount "14" @default.
- W3126588032 countsByYear W31265880322021 @default.
- W3126588032 countsByYear W31265880322022 @default.
- W3126588032 countsByYear W31265880322023 @default.
- W3126588032 crossrefType "journal-article" @default.
- W3126588032 hasAuthorship W3126588032A5000284759 @default.
- W3126588032 hasAuthorship W3126588032A5005420475 @default.
- W3126588032 hasAuthorship W3126588032A5037872785 @default.
- W3126588032 hasAuthorship W3126588032A5041979810 @default.
- W3126588032 hasAuthorship W3126588032A5063311766 @default.
- W3126588032 hasAuthorship W3126588032A5065326899 @default.
- W3126588032 hasAuthorship W3126588032A5071766901 @default.
- W3126588032 hasAuthorship W3126588032A5084772398 @default.
- W3126588032 hasConcept C105702510 @default.
- W3126588032 hasConcept C111278954 @default.
- W3126588032 hasConcept C141071460 @default.
- W3126588032 hasConcept C142724271 @default.
- W3126588032 hasConcept C168563851 @default.
- W3126588032 hasConcept C1862650 @default.
- W3126588032 hasConcept C204787440 @default.
- W3126588032 hasConcept C2776164576 @default.
- W3126588032 hasConcept C2780024818 @default.
- W3126588032 hasConcept C2780550940 @default.
- W3126588032 hasConcept C2911091166 @default.
- W3126588032 hasConcept C3018143345 @default.
- W3126588032 hasConcept C3020332539 @default.
- W3126588032 hasConcept C71924100 @default.
- W3126588032 hasConceptScore W3126588032C105702510 @default.
- W3126588032 hasConceptScore W3126588032C111278954 @default.
- W3126588032 hasConceptScore W3126588032C141071460 @default.
- W3126588032 hasConceptScore W3126588032C142724271 @default.
- W3126588032 hasConceptScore W3126588032C168563851 @default.
- W3126588032 hasConceptScore W3126588032C1862650 @default.
- W3126588032 hasConceptScore W3126588032C204787440 @default.
- W3126588032 hasConceptScore W3126588032C2776164576 @default.
- W3126588032 hasConceptScore W3126588032C2780024818 @default.
- W3126588032 hasConceptScore W3126588032C2780550940 @default.
- W3126588032 hasConceptScore W3126588032C2911091166 @default.
- W3126588032 hasConceptScore W3126588032C3018143345 @default.
- W3126588032 hasConceptScore W3126588032C3020332539 @default.
- W3126588032 hasConceptScore W3126588032C71924100 @default.
- W3126588032 hasIssue "4" @default.
- W3126588032 hasLocation W31265880321 @default.
- W3126588032 hasOpenAccess W3126588032 @default.
- W3126588032 hasPrimaryLocation W31265880321 @default.
- W3126588032 hasRelatedWork W2067419310 @default.
- W3126588032 hasRelatedWork W2086168607 @default.
- W3126588032 hasRelatedWork W2154656980 @default.
- W3126588032 hasRelatedWork W2317076135 @default.
- W3126588032 hasRelatedWork W2443052495 @default.
- W3126588032 hasRelatedWork W2474897553 @default.