Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126590033> ?p ?o ?g. }
- W3126590033 endingPage "8804" @default.
- W3126590033 startingPage "8783" @default.
- W3126590033 abstract "Brazil is one of the largest producers of maize worldwide. However, this production is threatened due to low soil fertility, especially low levels of potassium (K+). K+ is one of the most important nutrients in plant metabolism, acting on enzymatic activation and also on photosynthetic processes. The identification of its deficiency by using traditional methods is difficult with regard to timely restoration of the nutrient to adequate levels. Therefore, the use of low-cost modified cameras attached to Unmanned Aerial Vehicles (UAVs) are important tools for agricultural monitoring. Nevertheless, there are no reports of studies with the purpose of evaluating the monitoring of K+ deficiency in maize crops using multispectral images captured from UAVs. Therefore, this study aimed at exploring the possibility of identifying K+ deficiency and quantifying the nutrient leaf content by using a Vegetation Index (VI). The experiment was carried out at the National Soybean Research Centre (Embrapa Soja, a branch of the Brazilian Agricultural Research Corporation). The experimental plots were constantly managed in order to obtain different conditions of K+ availability to plants, achieving levels that ranged from severe deficiency to an adequate nutrient level. The following treatments were established: severe potassium deficiency (SPD), moderate potassium deficiency (MPD) and adequate supply of potassium (ASP). The evaluations were performed in the Brazilian maize crop referred to as ‘safrinha, at the V7, V12 and R3 developmental stages, with image capture covering the visible and near-infrared region, using two Fujifilm IS PRO digital cameras attached to an UAV. In these development stages, leaves were collected to determine tissue K+ concentration. The images were radiometrically corrected with the support of calibration targets and reference values, using an Fieldspec 3 Jr. spectroradiometer. The VIs comprised the ratio among the red, green and infrared spectral bands, that is, green normalized difference vegetation index (GNDVI), normalized difference vegetation index (NDVI), ratio between infrared and green (GRVI), ratio between green and infrared (GNIR), ratio between red and infrared (RNIR) and ratio between infrared and red (RVI). Regarding all the treatments assessed, the results showed that foliar K+ was statistically different. The VIs were efficient only in differentiating SPD and ASP treatments at all development stages evaluated. However, none were statistically significant for MPD. The linear regressions showed a high coefficient of determination (R2) and low root mean square error (RMSE) value; the best prediction of K+ concentration obtained was at V12 for regressions with these VIs: GRVI (R2 = 0.79, RMSE 4.50 g kg−1) and RVI (R2 = 0.71, RMSE 4.39 g kg−1). The grain yield values showed that SPD caused an average reduction of 5,645.90 kg ha−1 in relation to the ASP. Considering MPD, the grain yield was 1,242.00 kg ha−1 lower in comparison with ASP. In conclusion, estimating foliar K+ content and identifying its deficiency in maize crops based on the VIs of multispectral images from cameras attached to UAVs is possible, which ensures agility to these evaluations in a non-destructive manner, improving efficiency of K+ fertilization and providing farmers with a new tool." @default.
- W3126590033 created "2021-02-15" @default.
- W3126590033 creator A5032472376 @default.
- W3126590033 creator A5036284995 @default.
- W3126590033 creator A5037552669 @default.
- W3126590033 creator A5048206127 @default.
- W3126590033 creator A5074830435 @default.
- W3126590033 creator A5089839325 @default.
- W3126590033 date "2021-01-31" @default.
- W3126590033 modified "2023-10-03" @default.
- W3126590033 title "Identification and quantification of potassium (K<sup>+</sup>) deficiency in maize plants using an unmanned aerial vehicle and visible / near-infrared semi-professional digital camera" @default.
- W3126590033 cites W1511759670 @default.
- W3126590033 cites W1968894504 @default.
- W3126590033 cites W1970028096 @default.
- W3126590033 cites W1980997487 @default.
- W3126590033 cites W1986577639 @default.
- W3126590033 cites W1996379195 @default.
- W3126590033 cites W1998943389 @default.
- W3126590033 cites W1999495967 @default.
- W3126590033 cites W2000613913 @default.
- W3126590033 cites W2002064484 @default.
- W3126590033 cites W2009202065 @default.
- W3126590033 cites W2017859040 @default.
- W3126590033 cites W2019967662 @default.
- W3126590033 cites W2028678328 @default.
- W3126590033 cites W2029371427 @default.
- W3126590033 cites W2036003376 @default.
- W3126590033 cites W2042254390 @default.
- W3126590033 cites W2046404820 @default.
- W3126590033 cites W2064219338 @default.
- W3126590033 cites W2067412375 @default.
- W3126590033 cites W2067528756 @default.
- W3126590033 cites W2070395976 @default.
- W3126590033 cites W2070598848 @default.
- W3126590033 cites W2072254696 @default.
- W3126590033 cites W2075546765 @default.
- W3126590033 cites W2077707413 @default.
- W3126590033 cites W2086314176 @default.
- W3126590033 cites W2089464686 @default.
- W3126590033 cites W2089904598 @default.
- W3126590033 cites W2094924227 @default.
- W3126590033 cites W2120225005 @default.
- W3126590033 cites W2121721022 @default.
- W3126590033 cites W2122348296 @default.
- W3126590033 cites W2136107282 @default.
- W3126590033 cites W2137564764 @default.
- W3126590033 cites W2143101462 @default.
- W3126590033 cites W2153941928 @default.
- W3126590033 cites W2155778924 @default.
- W3126590033 cites W2167869331 @default.
- W3126590033 cites W2265294993 @default.
- W3126590033 cites W2317360817 @default.
- W3126590033 cites W2414293557 @default.
- W3126590033 cites W2491502237 @default.
- W3126590033 cites W2547486607 @default.
- W3126590033 cites W2560779390 @default.
- W3126590033 cites W2603228623 @default.
- W3126590033 cites W2612355489 @default.
- W3126590033 cites W2702736887 @default.
- W3126590033 cites W2747576694 @default.
- W3126590033 cites W2780577454 @default.
- W3126590033 cites W2792113625 @default.
- W3126590033 cites W3014006706 @default.
- W3126590033 cites W4248268077 @default.
- W3126590033 doi "https://doi.org/10.1080/01431161.2020.1871091" @default.
- W3126590033 hasPublicationYear "2021" @default.
- W3126590033 type Work @default.
- W3126590033 sameAs 3126590033 @default.
- W3126590033 citedByCount "8" @default.
- W3126590033 countsByYear W31265900332022 @default.
- W3126590033 countsByYear W31265900332023 @default.
- W3126590033 crossrefType "journal-article" @default.
- W3126590033 hasAuthorship W3126590033A5032472376 @default.
- W3126590033 hasAuthorship W3126590033A5036284995 @default.
- W3126590033 hasAuthorship W3126590033A5037552669 @default.
- W3126590033 hasAuthorship W3126590033A5048206127 @default.
- W3126590033 hasAuthorship W3126590033A5074830435 @default.
- W3126590033 hasAuthorship W3126590033A5089839325 @default.
- W3126590033 hasConcept C118518473 @default.
- W3126590033 hasConcept C127413603 @default.
- W3126590033 hasConcept C137580998 @default.
- W3126590033 hasConcept C142796444 @default.
- W3126590033 hasConcept C173163844 @default.
- W3126590033 hasConcept C178790620 @default.
- W3126590033 hasConcept C185592680 @default.
- W3126590033 hasConcept C18903297 @default.
- W3126590033 hasConcept C205649164 @default.
- W3126590033 hasConcept C2780158643 @default.
- W3126590033 hasConcept C2993497135 @default.
- W3126590033 hasConcept C39432304 @default.
- W3126590033 hasConcept C517785266 @default.
- W3126590033 hasConcept C62649853 @default.
- W3126590033 hasConcept C6557445 @default.
- W3126590033 hasConcept C86803240 @default.
- W3126590033 hasConcept C88463610 @default.
- W3126590033 hasConceptScore W3126590033C118518473 @default.
- W3126590033 hasConceptScore W3126590033C127413603 @default.
- W3126590033 hasConceptScore W3126590033C137580998 @default.