Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126592082> ?p ?o ?g. }
- W3126592082 endingPage "102" @default.
- W3126592082 startingPage "95" @default.
- W3126592082 abstract "Mental health concerns, such as suicidal thoughts, are frequently documented by providers in clinical notes, as opposed to structured coded data. In this study, we evaluated weakly supervised methods for detecting current suicidal ideation from unstructured clinical notes in electronic health record (EHR) systems. Weakly supervised machine learning methods leverage imperfect labels for training, alleviating the burden of creating a large manually annotated dataset. After identifying a cohort of 600 patients at risk for suicidal ideation, we used a rule-based natural language processing approach (NLP) approach to label the training and validation notes (n = 17,978). Using this large corpus of clinical notes, we trained several statistical machine learning models-logistic classifier, support vector machines (SVM), Naive Bayes classifier-and one deep learning model, namely a text classification convolutional neural network (CNN), to be evaluated on a manually-reviewed test set (n = 837). The CNN model outperformed all other methods, achieving an overall accuracy of 94% and a F1-score of 0.82 on documents with current suicidal ideation. This algorithm correctly identified an additional 42 encounters and 9 patients indicative of suicidal ideation but missing a structured diagnosis code. When applied to a random subset of 5,000 clinical notes, the algorithm classified 0.46% (n = 23) for current suicidal ideation, of which 87% were truly indicative via manual review. Implementation of this approach for large-scale document screening may play an important role in point-of-care clinical information systems for targeted suicide prevention interventions and improve research on the pathways from ideation to attempt." @default.
- W3126592082 created "2021-02-15" @default.
- W3126592082 creator A5016380995 @default.
- W3126592082 creator A5029443528 @default.
- W3126592082 creator A5051691741 @default.
- W3126592082 creator A5059954337 @default.
- W3126592082 creator A5072437852 @default.
- W3126592082 creator A5076584948 @default.
- W3126592082 creator A5080116611 @default.
- W3126592082 creator A5089437330 @default.
- W3126592082 creator A5091282584 @default.
- W3126592082 date "2021-04-01" @default.
- W3126592082 modified "2023-10-14" @default.
- W3126592082 title "Using weak supervision and deep learning to classify clinical notes for identification of current suicidal ideation" @default.
- W3126592082 cites W1512851806 @default.
- W3126592082 cites W154056763 @default.
- W3126592082 cites W1977934795 @default.
- W3126592082 cites W1980867644 @default.
- W3126592082 cites W1988160630 @default.
- W3126592082 cites W1990157883 @default.
- W3126592082 cites W1990369310 @default.
- W3126592082 cites W1998330513 @default.
- W3126592082 cites W2002514548 @default.
- W3126592082 cites W2061585911 @default.
- W3126592082 cites W2074042904 @default.
- W3126592082 cites W2118343190 @default.
- W3126592082 cites W2119097770 @default.
- W3126592082 cites W2126940297 @default.
- W3126592082 cites W2128163348 @default.
- W3126592082 cites W2129947832 @default.
- W3126592082 cites W2139865360 @default.
- W3126592082 cites W2148083007 @default.
- W3126592082 cites W2150874198 @default.
- W3126592082 cites W2166183437 @default.
- W3126592082 cites W2239385095 @default.
- W3126592082 cites W2746791238 @default.
- W3126592082 cites W2786615873 @default.
- W3126592082 cites W2799568506 @default.
- W3126592082 cites W2804266670 @default.
- W3126592082 cites W2916869320 @default.
- W3126592082 cites W2921616123 @default.
- W3126592082 cites W2927032858 @default.
- W3126592082 cites W2957226098 @default.
- W3126592082 cites W2974408919 @default.
- W3126592082 cites W2975086838 @default.
- W3126592082 cites W3044487977 @default.
- W3126592082 doi "https://doi.org/10.1016/j.jpsychires.2021.01.052" @default.
- W3126592082 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8009838" @default.
- W3126592082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33581461" @default.
- W3126592082 hasPublicationYear "2021" @default.
- W3126592082 type Work @default.
- W3126592082 sameAs 3126592082 @default.
- W3126592082 citedByCount "23" @default.
- W3126592082 countsByYear W31265920822021 @default.
- W3126592082 countsByYear W31265920822022 @default.
- W3126592082 countsByYear W31265920822023 @default.
- W3126592082 crossrefType "journal-article" @default.
- W3126592082 hasAuthorship W3126592082A5016380995 @default.
- W3126592082 hasAuthorship W3126592082A5029443528 @default.
- W3126592082 hasAuthorship W3126592082A5051691741 @default.
- W3126592082 hasAuthorship W3126592082A5059954337 @default.
- W3126592082 hasAuthorship W3126592082A5072437852 @default.
- W3126592082 hasAuthorship W3126592082A5076584948 @default.
- W3126592082 hasAuthorship W3126592082A5080116611 @default.
- W3126592082 hasAuthorship W3126592082A5089437330 @default.
- W3126592082 hasAuthorship W3126592082A5091282584 @default.
- W3126592082 hasBestOaLocation W31265920822 @default.
- W3126592082 hasConcept C119857082 @default.
- W3126592082 hasConcept C12267149 @default.
- W3126592082 hasConcept C154945302 @default.
- W3126592082 hasConcept C169258074 @default.
- W3126592082 hasConcept C2776641880 @default.
- W3126592082 hasConcept C3017944768 @default.
- W3126592082 hasConcept C41008148 @default.
- W3126592082 hasConcept C52001869 @default.
- W3126592082 hasConcept C526869908 @default.
- W3126592082 hasConcept C545542383 @default.
- W3126592082 hasConcept C71924100 @default.
- W3126592082 hasConcept C95623464 @default.
- W3126592082 hasConceptScore W3126592082C119857082 @default.
- W3126592082 hasConceptScore W3126592082C12267149 @default.
- W3126592082 hasConceptScore W3126592082C154945302 @default.
- W3126592082 hasConceptScore W3126592082C169258074 @default.
- W3126592082 hasConceptScore W3126592082C2776641880 @default.
- W3126592082 hasConceptScore W3126592082C3017944768 @default.
- W3126592082 hasConceptScore W3126592082C41008148 @default.
- W3126592082 hasConceptScore W3126592082C52001869 @default.
- W3126592082 hasConceptScore W3126592082C526869908 @default.
- W3126592082 hasConceptScore W3126592082C545542383 @default.
- W3126592082 hasConceptScore W3126592082C71924100 @default.
- W3126592082 hasConceptScore W3126592082C95623464 @default.
- W3126592082 hasFunder F4320332161 @default.
- W3126592082 hasLocation W31265920821 @default.
- W3126592082 hasLocation W31265920822 @default.
- W3126592082 hasLocation W31265920823 @default.
- W3126592082 hasOpenAccess W3126592082 @default.
- W3126592082 hasPrimaryLocation W31265920821 @default.
- W3126592082 hasRelatedWork W2595988085 @default.