Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126602502> ?p ?o ?g. }
- W3126602502 endingPage "104421" @default.
- W3126602502 startingPage "104421" @default.
- W3126602502 abstract "The aim of this study was to compare the genomic prediction ability for carcass composition indicator traits in Nellore cattle using the Best Linear Unbiased Prediction (BLUP), Genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP), Bayesian methods (BayesA, BayesB, BayesC and BayesianLASSO) and an approach combining the pedigree matrix of genotyped animals with both the genomic matrix and Bayesian methods. Phenotypic and genotypic information on about 66,000 and 21,000 animals, respectively, evaluated by National Association of Breeders and Researchers (ANCP) were available for body structure (BS), finishing precocity (FP), musculature (MS), Longissimus muscle area (LMA), back fat thickness (BF) and rump fat thickness (RF). The genotypes were obtained based on the low-density panel Zoetis CLARIFIDE® Nellore version 3.1 containing 30.754 markers. To obtain the prediction ability, the dataset was split into training (genotyped sires and dams with progenies) and validation (genotyped young animals without progeny records and without phenotypes) subsets. For genomic models, the predictive ability was assessed through the correlation between the deregressed expected progeny differences and DGVs. For BLUP model, the prediction ability was evaluated through the correlation between estimated breeding value (EBV) and deregressed expected progeny differences (dEPD). To evaluate the extent of prediction bias the linear regression coefficients between the response variable (dEPD) and DGVs (or EBVs for BLUP model) considering only the animals in the validation set, were calculated. In terms of prediction ability and bias, Bayesian approaches were superior for visual scores traits and the ssGBLUP for carcass traits obtained by ultrasonography, however, more biased results were obtained for BF and RF using the ssGBLUP. The ssGBLUP model showed less biased prediction for low heritability traits, such as LMA, and also it has lower computational demand and it is a straightforward method for implementing genomic selection in beef cattle. Therefore, earlier reliable genetic evaluation of unproven sires trough genomic selection is appealing in order to increase the genetic response for carcass traits in the Nellore (Bos taurus indicus) beef cattle." @default.
- W3126602502 created "2021-02-15" @default.
- W3126602502 creator A5005719046 @default.
- W3126602502 creator A5047155342 @default.
- W3126602502 creator A5065963623 @default.
- W3126602502 creator A5076870658 @default.
- W3126602502 creator A5080115095 @default.
- W3126602502 creator A5090063645 @default.
- W3126602502 creator A5091555287 @default.
- W3126602502 date "2021-03-01" @default.
- W3126602502 modified "2023-10-03" @default.
- W3126602502 title "Genomic prediction ability for carcass composition indicator traits in Nellore cattle" @default.
- W3126602502 cites W1568780906 @default.
- W3126602502 cites W1928998639 @default.
- W3126602502 cites W1970149620 @default.
- W3126602502 cites W1970459140 @default.
- W3126602502 cites W1977070310 @default.
- W3126602502 cites W1978208556 @default.
- W3126602502 cites W1999679966 @default.
- W3126602502 cites W2007816160 @default.
- W3126602502 cites W2024777592 @default.
- W3126602502 cites W2027494779 @default.
- W3126602502 cites W2030447496 @default.
- W3126602502 cites W2034846276 @default.
- W3126602502 cites W2036156662 @default.
- W3126602502 cites W2041000916 @default.
- W3126602502 cites W2056866467 @default.
- W3126602502 cites W2056924421 @default.
- W3126602502 cites W2057788013 @default.
- W3126602502 cites W2070612147 @default.
- W3126602502 cites W2071430437 @default.
- W3126602502 cites W2085864372 @default.
- W3126602502 cites W2093177078 @default.
- W3126602502 cites W2102811409 @default.
- W3126602502 cites W2107289228 @default.
- W3126602502 cites W2110787179 @default.
- W3126602502 cites W2110974472 @default.
- W3126602502 cites W2114044285 @default.
- W3126602502 cites W2128343509 @default.
- W3126602502 cites W2156951530 @default.
- W3126602502 cites W2156963627 @default.
- W3126602502 cites W2158146843 @default.
- W3126602502 cites W2168329225 @default.
- W3126602502 cites W2171079950 @default.
- W3126602502 cites W2172258339 @default.
- W3126602502 cites W2238355159 @default.
- W3126602502 cites W2276064663 @default.
- W3126602502 cites W2310044350 @default.
- W3126602502 cites W2314639564 @default.
- W3126602502 cites W2325014228 @default.
- W3126602502 cites W2767520269 @default.
- W3126602502 cites W2793320226 @default.
- W3126602502 cites W2889467678 @default.
- W3126602502 cites W2908383145 @default.
- W3126602502 cites W2930682374 @default.
- W3126602502 cites W2971747697 @default.
- W3126602502 cites W2999988749 @default.
- W3126602502 cites W842685636 @default.
- W3126602502 cites W92052964 @default.
- W3126602502 doi "https://doi.org/10.1016/j.livsci.2021.104421" @default.
- W3126602502 hasPublicationYear "2021" @default.
- W3126602502 type Work @default.
- W3126602502 sameAs 3126602502 @default.
- W3126602502 citedByCount "5" @default.
- W3126602502 countsByYear W31266025022021 @default.
- W3126602502 countsByYear W31266025022022 @default.
- W3126602502 countsByYear W31266025022023 @default.
- W3126602502 crossrefType "journal-article" @default.
- W3126602502 hasAuthorship W3126602502A5005719046 @default.
- W3126602502 hasAuthorship W3126602502A5047155342 @default.
- W3126602502 hasAuthorship W3126602502A5065963623 @default.
- W3126602502 hasAuthorship W3126602502A5076870658 @default.
- W3126602502 hasAuthorship W3126602502A5080115095 @default.
- W3126602502 hasAuthorship W3126602502A5090063645 @default.
- W3126602502 hasAuthorship W3126602502A5091555287 @default.
- W3126602502 hasConcept C103545067 @default.
- W3126602502 hasConcept C104317684 @default.
- W3126602502 hasConcept C105795698 @default.
- W3126602502 hasConcept C117220453 @default.
- W3126602502 hasConcept C119857082 @default.
- W3126602502 hasConcept C140793950 @default.
- W3126602502 hasConcept C16012445 @default.
- W3126602502 hasConcept C2524010 @default.
- W3126602502 hasConcept C2778002360 @default.
- W3126602502 hasConcept C2780505807 @default.
- W3126602502 hasConcept C33923547 @default.
- W3126602502 hasConcept C41008148 @default.
- W3126602502 hasConcept C54355233 @default.
- W3126602502 hasConcept C81917197 @default.
- W3126602502 hasConcept C81941488 @default.
- W3126602502 hasConcept C86803240 @default.
- W3126602502 hasConceptScore W3126602502C103545067 @default.
- W3126602502 hasConceptScore W3126602502C104317684 @default.
- W3126602502 hasConceptScore W3126602502C105795698 @default.
- W3126602502 hasConceptScore W3126602502C117220453 @default.
- W3126602502 hasConceptScore W3126602502C119857082 @default.
- W3126602502 hasConceptScore W3126602502C140793950 @default.
- W3126602502 hasConceptScore W3126602502C16012445 @default.