Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126610102> ?p ?o ?g. }
- W3126610102 abstract "Early identification of coronary artery disease (CAD) can prevent the progress of CAD and effectually lower the mortality rate, so we intended to construct and validate a machine learning model to predict the risk of CAD based on conventional risk factors and lab test data. There were 3,112 CAD patients and 3,182 controls enrolled from three centers in China. We compared the baseline and clinical characteristics between two groups. Then, Random Forest algorithm was used to construct a model to predict CAD and the model was assessed by receiver operating characteristic (ROC) curve. In the development cohort, the Random Forest model showed a good AUC 0.948 (95%CI: 0.941–0.954) to identify CAD patients from controls, with a sensitivity of 90%, a specificity of 85.4%, a positive predictive value of 0.863 and a negative predictive value of 0.894. Validation of the model also yielded a favorable discriminatory ability with the AUC, sensitivity, specificity, positive predictive value, and negative predictive value of 0.944 (95%CI: 0.934–0.955), 89.5%, 85.8%, 0.868, and 0.886 in the validation cohort 1, respectively, and 0.940 (95%CI: 0.922–0.960), 79.5%, 94.3%, 0.932, and 0.823 in the validation cohort 2, respectively. An easy-to-use tool that combined 15 indexes to assess the CAD risk was constructed and validated using Random Forest algorithm, which showed favorable predictive capability ( http://45.32.120.149:3000/randomforest ). Our model is extremely valuable for clinical practice, which will be helpful for the management and primary prevention of CAD patients." @default.
- W3126610102 created "2021-02-15" @default.
- W3126610102 creator A5013038112 @default.
- W3126610102 creator A5034254930 @default.
- W3126610102 creator A5048199940 @default.
- W3126610102 creator A5056000409 @default.
- W3126610102 creator A5058584634 @default.
- W3126610102 creator A5066956928 @default.
- W3126610102 creator A5067709037 @default.
- W3126610102 creator A5075301897 @default.
- W3126610102 creator A5089351331 @default.
- W3126610102 date "2021-02-02" @default.
- W3126610102 modified "2023-10-12" @default.
- W3126610102 title "Development and Validation of a Predictive Model for Coronary Artery Disease Using Machine Learning" @default.
- W3126610102 cites W1520609538 @default.
- W3126610102 cites W1562774482 @default.
- W3126610102 cites W1816597323 @default.
- W3126610102 cites W1844290133 @default.
- W3126610102 cites W1856460279 @default.
- W3126610102 cites W1976428272 @default.
- W3126610102 cites W1984513597 @default.
- W3126610102 cites W1987899716 @default.
- W3126610102 cites W1990031103 @default.
- W3126610102 cites W2015788490 @default.
- W3126610102 cites W2036674202 @default.
- W3126610102 cites W2041380076 @default.
- W3126610102 cites W2042344342 @default.
- W3126610102 cites W2048772309 @default.
- W3126610102 cites W2051474907 @default.
- W3126610102 cites W2054604929 @default.
- W3126610102 cites W2060385898 @default.
- W3126610102 cites W2060881344 @default.
- W3126610102 cites W2074644304 @default.
- W3126610102 cites W2094941678 @default.
- W3126610102 cites W2095726149 @default.
- W3126610102 cites W2099640897 @default.
- W3126610102 cites W2110171695 @default.
- W3126610102 cites W2113680815 @default.
- W3126610102 cites W2116990347 @default.
- W3126610102 cites W2118825330 @default.
- W3126610102 cites W2127427274 @default.
- W3126610102 cites W2131155809 @default.
- W3126610102 cites W2142769596 @default.
- W3126610102 cites W2145813488 @default.
- W3126610102 cites W2157157967 @default.
- W3126610102 cites W2163969089 @default.
- W3126610102 cites W2165884492 @default.
- W3126610102 cites W2170466777 @default.
- W3126610102 cites W2178373375 @default.
- W3126610102 cites W2486562175 @default.
- W3126610102 cites W2519634482 @default.
- W3126610102 cites W2549881333 @default.
- W3126610102 cites W2596179513 @default.
- W3126610102 cites W2600611309 @default.
- W3126610102 cites W2615043561 @default.
- W3126610102 cites W2625971622 @default.
- W3126610102 cites W2803425573 @default.
- W3126610102 cites W2899736836 @default.
- W3126610102 cites W2917025828 @default.
- W3126610102 cites W2946988413 @default.
- W3126610102 cites W2947239268 @default.
- W3126610102 cites W3001764054 @default.
- W3126610102 cites W3028135838 @default.
- W3126610102 doi "https://doi.org/10.3389/fcvm.2021.614204" @default.
- W3126610102 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7902072" @default.
- W3126610102 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33634169" @default.
- W3126610102 hasPublicationYear "2021" @default.
- W3126610102 type Work @default.
- W3126610102 sameAs 3126610102 @default.
- W3126610102 citedByCount "7" @default.
- W3126610102 countsByYear W31266101022021 @default.
- W3126610102 countsByYear W31266101022022 @default.
- W3126610102 countsByYear W31266101022023 @default.
- W3126610102 crossrefType "journal-article" @default.
- W3126610102 hasAuthorship W3126610102A5013038112 @default.
- W3126610102 hasAuthorship W3126610102A5034254930 @default.
- W3126610102 hasAuthorship W3126610102A5048199940 @default.
- W3126610102 hasAuthorship W3126610102A5056000409 @default.
- W3126610102 hasAuthorship W3126610102A5058584634 @default.
- W3126610102 hasAuthorship W3126610102A5066956928 @default.
- W3126610102 hasAuthorship W3126610102A5067709037 @default.
- W3126610102 hasAuthorship W3126610102A5075301897 @default.
- W3126610102 hasAuthorship W3126610102A5089351331 @default.
- W3126610102 hasBestOaLocation W31266101021 @default.
- W3126610102 hasConcept C119857082 @default.
- W3126610102 hasConcept C126322002 @default.
- W3126610102 hasConcept C127413603 @default.
- W3126610102 hasConcept C154945302 @default.
- W3126610102 hasConcept C164705383 @default.
- W3126610102 hasConcept C169258074 @default.
- W3126610102 hasConcept C194789388 @default.
- W3126610102 hasConcept C198433322 @default.
- W3126610102 hasConcept C199639397 @default.
- W3126610102 hasConcept C2778213512 @default.
- W3126610102 hasConcept C3019719930 @default.
- W3126610102 hasConcept C41008148 @default.
- W3126610102 hasConcept C45804977 @default.
- W3126610102 hasConcept C58471807 @default.
- W3126610102 hasConcept C71924100 @default.
- W3126610102 hasConcept C72563966 @default.