Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126634944> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3126634944 abstract "In remote regions (e.g., mountain and desert), cellular networks are usually sparsely deployed or unavailable. With the appearance of new applications (e.g., industrial automation and environment monitoring) in remote regions, resource-constrained terminals become unable to meet the latency requirements. Meanwhile, offloading tasks to urban terrestrial cloud (TC) via satellite link will lead to high delay. To tackle above issues, Satellite Edge Computing architecture is proposed, i.e., users can offload computing tasks to visible satellites for executing. However, existing works are usually limited to offload tasks in pure satellite networks, and make offloading decisions based on the predefined models of users. Besides, the runtime consumption of existing algorithms is rather high. In this paper, we study the task offloading problem in satellite-terrestrial edge computing networks, where tasks can be executed by satellite or urban TC. The proposed Deep Reinforcement learning-based Task Offloading (DRTO) algorithm can accelerate learning process by adjusting the number of candidate locations. In addition, offloading location and bandwidth allocation only depend on the current channel states. Simulation results show that DRTO achieves near-optimal offloading cost performance with much less runtime consumption, which is more suitable for satellite-terrestrial network with fast fading channel." @default.
- W3126634944 created "2021-02-15" @default.
- W3126634944 creator A5002059219 @default.
- W3126634944 creator A5013630392 @default.
- W3126634944 creator A5018053243 @default.
- W3126634944 creator A5028936740 @default.
- W3126634944 creator A5056414039 @default.
- W3126634944 creator A5059246379 @default.
- W3126634944 creator A5061817335 @default.
- W3126634944 creator A5089769533 @default.
- W3126634944 date "2021-02-02" @default.
- W3126634944 modified "2023-10-16" @default.
- W3126634944 title "Deep Reinforcement Learning-based Task Offloading in Satellite-Terrestrial Edge Computing Networks" @default.
- W3126634944 cites W1549998098 @default.
- W3126634944 cites W1757796397 @default.
- W3126634944 cites W2914511185 @default.
- W3126634944 cites W2943623841 @default.
- W3126634944 cites W2964054168 @default.
- W3126634944 cites W2964121744 @default.
- W3126634944 cites W2980044264 @default.
- W3126634944 cites W3003503813 @default.
- W3126634944 cites W3007966503 @default.
- W3126634944 cites W3007967331 @default.
- W3126634944 cites W3009165660 @default.
- W3126634944 cites W3009823869 @default.
- W3126634944 cites W3023316283 @default.
- W3126634944 cites W3035963603 @default.
- W3126634944 cites W3045503151 @default.
- W3126634944 cites W3047562633 @default.
- W3126634944 cites W3124943657 @default.
- W3126634944 doi "https://doi.org/10.48550/arxiv.2102.01876" @default.
- W3126634944 hasPublicationYear "2021" @default.
- W3126634944 type Work @default.
- W3126634944 sameAs 3126634944 @default.
- W3126634944 citedByCount "0" @default.
- W3126634944 crossrefType "posted-content" @default.
- W3126634944 hasAuthorship W3126634944A5002059219 @default.
- W3126634944 hasAuthorship W3126634944A5013630392 @default.
- W3126634944 hasAuthorship W3126634944A5018053243 @default.
- W3126634944 hasAuthorship W3126634944A5028936740 @default.
- W3126634944 hasAuthorship W3126634944A5056414039 @default.
- W3126634944 hasAuthorship W3126634944A5059246379 @default.
- W3126634944 hasAuthorship W3126634944A5061817335 @default.
- W3126634944 hasAuthorship W3126634944A5089769533 @default.
- W3126634944 hasBestOaLocation W31266349441 @default.
- W3126634944 hasConcept C111919701 @default.
- W3126634944 hasConcept C120314980 @default.
- W3126634944 hasConcept C127413603 @default.
- W3126634944 hasConcept C146978453 @default.
- W3126634944 hasConcept C154945302 @default.
- W3126634944 hasConcept C162307627 @default.
- W3126634944 hasConcept C19269812 @default.
- W3126634944 hasConcept C2778456923 @default.
- W3126634944 hasConcept C31258907 @default.
- W3126634944 hasConcept C41008148 @default.
- W3126634944 hasConcept C79403827 @default.
- W3126634944 hasConcept C79974875 @default.
- W3126634944 hasConcept C97541855 @default.
- W3126634944 hasConceptScore W3126634944C111919701 @default.
- W3126634944 hasConceptScore W3126634944C120314980 @default.
- W3126634944 hasConceptScore W3126634944C127413603 @default.
- W3126634944 hasConceptScore W3126634944C146978453 @default.
- W3126634944 hasConceptScore W3126634944C154945302 @default.
- W3126634944 hasConceptScore W3126634944C162307627 @default.
- W3126634944 hasConceptScore W3126634944C19269812 @default.
- W3126634944 hasConceptScore W3126634944C2778456923 @default.
- W3126634944 hasConceptScore W3126634944C31258907 @default.
- W3126634944 hasConceptScore W3126634944C41008148 @default.
- W3126634944 hasConceptScore W3126634944C79403827 @default.
- W3126634944 hasConceptScore W3126634944C79974875 @default.
- W3126634944 hasConceptScore W3126634944C97541855 @default.
- W3126634944 hasLocation W31266349441 @default.
- W3126634944 hasOpenAccess W3126634944 @default.
- W3126634944 hasPrimaryLocation W31266349441 @default.
- W3126634944 hasRelatedWork W2765557566 @default.
- W3126634944 hasRelatedWork W2804912624 @default.
- W3126634944 hasRelatedWork W2945616868 @default.
- W3126634944 hasRelatedWork W2995654207 @default.
- W3126634944 hasRelatedWork W3043683902 @default.
- W3126634944 hasRelatedWork W3046945740 @default.
- W3126634944 hasRelatedWork W3193936498 @default.
- W3126634944 hasRelatedWork W3211981316 @default.
- W3126634944 hasRelatedWork W4226427977 @default.
- W3126634944 hasRelatedWork W4281293975 @default.
- W3126634944 isParatext "false" @default.
- W3126634944 isRetracted "false" @default.
- W3126634944 magId "3126634944" @default.
- W3126634944 workType "article" @default.