Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126637393> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3126637393 abstract "A bone fracture is a complete or incomplete discontinuity in a bone, often caused by an impact. While extreme fractures are sometimes obvious, most fractures require radiographic imaging (such as X-ray) to diagnose and treat. Unfortunately, cost, access to such equipment, and availability of trained personnel to interpret the results present significant barriers to many in remote areas and developing countries. In this feasibility study, a low-cost and portable bone fracture detection method and device are proposed to help this under-served segment of patients. Drawing on previously published work regarding the automated detection of mechanical fractures using induced vibrations in an industrial setting, this paper presents a technique to replicate and improve upon manual detection techniques using a tuning fork and stethoscope by using digital signal processing and machine learning techniques. In order to make fracture detection more accessible, the prototype device presented does not require any specialized skills to operate, maintains portability, is automated, and has the potential to be manufactured inexpensively. Fractures are detected by inducing vibrations in the bone and measuring the resulting signal to detect structural defects. Using animal bones with synthetic soft tissues to replicate the dampening effects of muscle and connective tissue, machine learning models were trained and tested, achieving 93.6% accuracy. The proposed technique may also prove effective in-vivo although further testing is required." @default.
- W3126637393 created "2021-02-15" @default.
- W3126637393 creator A5019186267 @default.
- W3126637393 creator A5041623931 @default.
- W3126637393 creator A5059088492 @default.
- W3126637393 creator A5075723454 @default.
- W3126637393 creator A5077056325 @default.
- W3126637393 date "2020-10-29" @default.
- W3126637393 modified "2023-09-23" @default.
- W3126637393 title "Induced Acoustic Resonance for Noninvasive Bone Fracture Detection Using Digital Signal Processing and Machine Learning" @default.
- W3126637393 cites W1971127219 @default.
- W3126637393 cites W1981054846 @default.
- W3126637393 cites W1996925764 @default.
- W3126637393 cites W2054048509 @default.
- W3126637393 cites W2082753941 @default.
- W3126637393 cites W2124147431 @default.
- W3126637393 cites W2158489506 @default.
- W3126637393 cites W2221016424 @default.
- W3126637393 cites W2472194394 @default.
- W3126637393 cites W2751243593 @default.
- W3126637393 cites W2762239123 @default.
- W3126637393 cites W2940624071 @default.
- W3126637393 doi "https://doi.org/10.1109/ghtc46280.2020.9342913" @default.
- W3126637393 hasPublicationYear "2020" @default.
- W3126637393 type Work @default.
- W3126637393 sameAs 3126637393 @default.
- W3126637393 citedByCount "0" @default.
- W3126637393 crossrefType "proceedings-article" @default.
- W3126637393 hasAuthorship W3126637393A5019186267 @default.
- W3126637393 hasAuthorship W3126637393A5041623931 @default.
- W3126637393 hasAuthorship W3126637393A5059088492 @default.
- W3126637393 hasAuthorship W3126637393A5075723454 @default.
- W3126637393 hasAuthorship W3126637393A5077056325 @default.
- W3126637393 hasConcept C104267543 @default.
- W3126637393 hasConcept C105795698 @default.
- W3126637393 hasConcept C119857082 @default.
- W3126637393 hasConcept C126838900 @default.
- W3126637393 hasConcept C154945302 @default.
- W3126637393 hasConcept C2776441800 @default.
- W3126637393 hasConcept C2779055095 @default.
- W3126637393 hasConcept C2781162219 @default.
- W3126637393 hasConcept C33923547 @default.
- W3126637393 hasConcept C41008148 @default.
- W3126637393 hasConcept C71924100 @default.
- W3126637393 hasConcept C84462506 @default.
- W3126637393 hasConcept C9390403 @default.
- W3126637393 hasConceptScore W3126637393C104267543 @default.
- W3126637393 hasConceptScore W3126637393C105795698 @default.
- W3126637393 hasConceptScore W3126637393C119857082 @default.
- W3126637393 hasConceptScore W3126637393C126838900 @default.
- W3126637393 hasConceptScore W3126637393C154945302 @default.
- W3126637393 hasConceptScore W3126637393C2776441800 @default.
- W3126637393 hasConceptScore W3126637393C2779055095 @default.
- W3126637393 hasConceptScore W3126637393C2781162219 @default.
- W3126637393 hasConceptScore W3126637393C33923547 @default.
- W3126637393 hasConceptScore W3126637393C41008148 @default.
- W3126637393 hasConceptScore W3126637393C71924100 @default.
- W3126637393 hasConceptScore W3126637393C84462506 @default.
- W3126637393 hasConceptScore W3126637393C9390403 @default.
- W3126637393 hasLocation W31266373931 @default.
- W3126637393 hasOpenAccess W3126637393 @default.
- W3126637393 hasPrimaryLocation W31266373931 @default.
- W3126637393 hasRelatedWork W4596710 @default.
- W3126637393 hasRelatedWork W5590877 @default.
- W3126637393 hasRelatedWork W6929485 @default.
- W3126637393 hasRelatedWork W6974703 @default.
- W3126637393 hasRelatedWork W7120470 @default.
- W3126637393 hasRelatedWork W7390500 @default.
- W3126637393 hasRelatedWork W7670123 @default.
- W3126637393 hasRelatedWork W8627070 @default.
- W3126637393 hasRelatedWork W9550239 @default.
- W3126637393 hasRelatedWork W2214267 @default.
- W3126637393 isParatext "false" @default.
- W3126637393 isRetracted "false" @default.
- W3126637393 magId "3126637393" @default.
- W3126637393 workType "article" @default.