Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126663800> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3126663800 abstract "Abstract Motivation Virtual screening, which can computationally predict the presence or absence of protein-compound interactions, has attracted attention as a large-scale, low-cost, and short-term search method for seed compounds. Existing machine learning methods for predicting protein-compound interactions are largely divided into those based on molecular structure data and those based on network data. The former utilize information on proteins and compounds, such as amino acid sequences and chemical structures, while the latter utilize interaction network data, such as data on protein-protein interactions and compound-compound interactions. However, few attempts have been made to combine both types of data in molecular information and interaction networks. Results We developed a deep learning-based method that integrates protein features, compound features, and multiple types of interactome data to predict protein-compound interactions. We designed three benchmark datasets with different difficulties and evaluated the performance on them. The performance evaluations show that our deep learning framework for integrating molecular structure data and interactome data outperforms state-of-the-art machine learning methods for protein-compound interaction prediction tasks. The performance improvement is proven to be statistically significant by the Wilcoxon signed-rank test. This reveals that the multi-interactome captures different perspectives than amino acid sequence homology and chemical structure similarity, and both type of data have a synergistic effect in improving prediction accuracy. Furthermore, experiments on three benchmark datasets show that our method is more robust than existing methods in accurately predicting interactions between proteins and compounds that are unseen in the training samples." @default.
- W3126663800 created "2021-02-15" @default.
- W3126663800 creator A5025573915 @default.
- W3126663800 creator A5073999509 @default.
- W3126663800 creator A5083301107 @default.
- W3126663800 date "2021-02-01" @default.
- W3126663800 modified "2023-09-27" @default.
- W3126663800 title "Deep learning integration of molecular and interactome data for protein-compound interaction prediction" @default.
- W3126663800 cites W1986087295 @default.
- W3126663800 cites W1988037271 @default.
- W3126663800 cites W1995683190 @default.
- W3126663800 cites W2009313526 @default.
- W3126663800 cites W2077057698 @default.
- W3126663800 cites W2132474663 @default.
- W3126663800 cites W2146382443 @default.
- W3126663800 cites W2168954492 @default.
- W3126663800 cites W2171017796 @default.
- W3126663800 cites W2177317049 @default.
- W3126663800 cites W2316415199 @default.
- W3126663800 cites W2471196942 @default.
- W3126663800 cites W2622157970 @default.
- W3126663800 cites W2753953057 @default.
- W3126663800 cites W2785947426 @default.
- W3126663800 cites W2786016794 @default.
- W3126663800 cites W2860192827 @default.
- W3126663800 cites W2887107671 @default.
- W3126663800 cites W2890850847 @default.
- W3126663800 cites W2899788782 @default.
- W3126663800 cites W2919115771 @default.
- W3126663800 cites W2949676527 @default.
- W3126663800 cites W2952522777 @default.
- W3126663800 cites W2957436444 @default.
- W3126663800 cites W3106324661 @default.
- W3126663800 cites W4252684946 @default.
- W3126663800 doi "https://doi.org/10.1101/2021.01.31.429000" @default.
- W3126663800 hasPublicationYear "2021" @default.
- W3126663800 type Work @default.
- W3126663800 sameAs 3126663800 @default.
- W3126663800 citedByCount "0" @default.
- W3126663800 crossrefType "posted-content" @default.
- W3126663800 hasAuthorship W3126663800A5025573915 @default.
- W3126663800 hasAuthorship W3126663800A5073999509 @default.
- W3126663800 hasAuthorship W3126663800A5083301107 @default.
- W3126663800 hasBestOaLocation W31266638001 @default.
- W3126663800 hasConcept C104317684 @default.
- W3126663800 hasConcept C105795698 @default.
- W3126663800 hasConcept C108583219 @default.
- W3126663800 hasConcept C119857082 @default.
- W3126663800 hasConcept C124101348 @default.
- W3126663800 hasConcept C13280743 @default.
- W3126663800 hasConcept C154945302 @default.
- W3126663800 hasConcept C185592680 @default.
- W3126663800 hasConcept C185798385 @default.
- W3126663800 hasConcept C205649164 @default.
- W3126663800 hasConcept C33923547 @default.
- W3126663800 hasConcept C38764148 @default.
- W3126663800 hasConcept C41008148 @default.
- W3126663800 hasConcept C50644808 @default.
- W3126663800 hasConcept C55493867 @default.
- W3126663800 hasConcept C9760119 @default.
- W3126663800 hasConceptScore W3126663800C104317684 @default.
- W3126663800 hasConceptScore W3126663800C105795698 @default.
- W3126663800 hasConceptScore W3126663800C108583219 @default.
- W3126663800 hasConceptScore W3126663800C119857082 @default.
- W3126663800 hasConceptScore W3126663800C124101348 @default.
- W3126663800 hasConceptScore W3126663800C13280743 @default.
- W3126663800 hasConceptScore W3126663800C154945302 @default.
- W3126663800 hasConceptScore W3126663800C185592680 @default.
- W3126663800 hasConceptScore W3126663800C185798385 @default.
- W3126663800 hasConceptScore W3126663800C205649164 @default.
- W3126663800 hasConceptScore W3126663800C33923547 @default.
- W3126663800 hasConceptScore W3126663800C38764148 @default.
- W3126663800 hasConceptScore W3126663800C41008148 @default.
- W3126663800 hasConceptScore W3126663800C50644808 @default.
- W3126663800 hasConceptScore W3126663800C55493867 @default.
- W3126663800 hasConceptScore W3126663800C9760119 @default.
- W3126663800 hasLocation W31266638001 @default.
- W3126663800 hasOpenAccess W3126663800 @default.
- W3126663800 hasPrimaryLocation W31266638001 @default.
- W3126663800 hasRelatedWork W2922457425 @default.
- W3126663800 hasRelatedWork W3014300295 @default.
- W3126663800 hasRelatedWork W3164822677 @default.
- W3126663800 hasRelatedWork W4223943233 @default.
- W3126663800 hasRelatedWork W4225161397 @default.
- W3126663800 hasRelatedWork W4250304930 @default.
- W3126663800 hasRelatedWork W4309045103 @default.
- W3126663800 hasRelatedWork W4312200629 @default.
- W3126663800 hasRelatedWork W4360585206 @default.
- W3126663800 hasRelatedWork W4364306694 @default.
- W3126663800 isParatext "false" @default.
- W3126663800 isRetracted "false" @default.
- W3126663800 magId "3126663800" @default.
- W3126663800 workType "article" @default.