Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126718908> ?p ?o ?g. }
- W3126718908 abstract "Quantum computing is a new exciting field which can be exploited to great speed and innovation in machine learning and artificial intelligence. Quantum machine learning at crossroads explores the interaction between quantum computing and machine learning, supplementing each other to create models and also to accelerate existing machine learning models predicting better and accurate classifications. The main purpose is to explore methods, concepts, theories, and algorithms that focus and utilize quantum computing features such as superposition and entanglement to enhance the abilities of machine learning computations enormously faster. It is a natural goal to study the present and future quantum technologies with machine learning that can enhance the existing classical algorithms. The objective of this chapter is to facilitate the reader to grasp the key components involved in the field to be able to understand the essentialities of the subject and thus can compare computations of quantum computing with its counterpart classical machine learning algorithms." @default.
- W3126718908 created "2021-02-15" @default.
- W3126718908 creator A5029736099 @default.
- W3126718908 creator A5061460713 @default.
- W3126718908 date "2021-01-01" @default.
- W3126718908 modified "2023-09-23" @default.
- W3126718908 title "Recent Progress in Quantum Machine Learning" @default.
- W3126718908 cites W14334640 @default.
- W3126718908 cites W1492999010 @default.
- W3126718908 cites W1569000027 @default.
- W3126718908 cites W1631356911 @default.
- W3126718908 cites W1825135508 @default.
- W3126718908 cites W1901616594 @default.
- W3126718908 cites W1965702053 @default.
- W3126718908 cites W1978830069 @default.
- W3126718908 cites W1980910057 @default.
- W3126718908 cites W1988369744 @default.
- W3126718908 cites W1990514347 @default.
- W3126718908 cites W1992574024 @default.
- W3126718908 cites W1992716633 @default.
- W3126718908 cites W2012027926 @default.
- W3126718908 cites W2029029634 @default.
- W3126718908 cites W2031056773 @default.
- W3126718908 cites W2044391895 @default.
- W3126718908 cites W2055784634 @default.
- W3126718908 cites W2056687151 @default.
- W3126718908 cites W2069563009 @default.
- W3126718908 cites W2101403221 @default.
- W3126718908 cites W2103343043 @default.
- W3126718908 cites W2103956991 @default.
- W3126718908 cites W2117941808 @default.
- W3126718908 cites W2128024939 @default.
- W3126718908 cites W2147435884 @default.
- W3126718908 cites W2155728415 @default.
- W3126718908 cites W2160270275 @default.
- W3126718908 cites W2521267242 @default.
- W3126718908 cites W2559394418 @default.
- W3126718908 cites W2594860211 @default.
- W3126718908 cites W2736592352 @default.
- W3126718908 cites W2749353276 @default.
- W3126718908 cites W2765646145 @default.
- W3126718908 cites W2796293949 @default.
- W3126718908 cites W2886521985 @default.
- W3126718908 cites W2887925010 @default.
- W3126718908 cites W2897217696 @default.
- W3126718908 cites W2903891684 @default.
- W3126718908 cites W2942828225 @default.
- W3126718908 cites W2943027572 @default.
- W3126718908 cites W2951663210 @default.
- W3126718908 cites W2963837235 @default.
- W3126718908 cites W3037853801 @default.
- W3126718908 cites W3098662938 @default.
- W3126718908 cites W3098768946 @default.
- W3126718908 cites W3104599990 @default.
- W3126718908 doi "https://doi.org/10.4018/978-1-7998-6677-0.ch012" @default.
- W3126718908 hasPublicationYear "2021" @default.
- W3126718908 type Work @default.
- W3126718908 sameAs 3126718908 @default.
- W3126718908 citedByCount "2" @default.
- W3126718908 countsByYear W31267189082022 @default.
- W3126718908 countsByYear W31267189082023 @default.
- W3126718908 crossrefType "book-chapter" @default.
- W3126718908 hasAuthorship W3126718908A5029736099 @default.
- W3126718908 hasAuthorship W3126718908A5061460713 @default.
- W3126718908 hasConcept C119857082 @default.
- W3126718908 hasConcept C121040770 @default.
- W3126718908 hasConcept C121332964 @default.
- W3126718908 hasConcept C154945302 @default.
- W3126718908 hasConcept C171268870 @default.
- W3126718908 hasConcept C199360897 @default.
- W3126718908 hasConcept C202444582 @default.
- W3126718908 hasConcept C2779094486 @default.
- W3126718908 hasConcept C33923547 @default.
- W3126718908 hasConcept C41008148 @default.
- W3126718908 hasConcept C58053490 @default.
- W3126718908 hasConcept C62520636 @default.
- W3126718908 hasConcept C80444323 @default.
- W3126718908 hasConcept C84114770 @default.
- W3126718908 hasConcept C9652623 @default.
- W3126718908 hasConceptScore W3126718908C119857082 @default.
- W3126718908 hasConceptScore W3126718908C121040770 @default.
- W3126718908 hasConceptScore W3126718908C121332964 @default.
- W3126718908 hasConceptScore W3126718908C154945302 @default.
- W3126718908 hasConceptScore W3126718908C171268870 @default.
- W3126718908 hasConceptScore W3126718908C199360897 @default.
- W3126718908 hasConceptScore W3126718908C202444582 @default.
- W3126718908 hasConceptScore W3126718908C2779094486 @default.
- W3126718908 hasConceptScore W3126718908C33923547 @default.
- W3126718908 hasConceptScore W3126718908C41008148 @default.
- W3126718908 hasConceptScore W3126718908C58053490 @default.
- W3126718908 hasConceptScore W3126718908C62520636 @default.
- W3126718908 hasConceptScore W3126718908C80444323 @default.
- W3126718908 hasConceptScore W3126718908C84114770 @default.
- W3126718908 hasConceptScore W3126718908C9652623 @default.
- W3126718908 hasLocation W31267189081 @default.
- W3126718908 hasOpenAccess W3126718908 @default.
- W3126718908 hasPrimaryLocation W31267189081 @default.
- W3126718908 hasRelatedWork W1403231 @default.
- W3126718908 hasRelatedWork W1650390 @default.
- W3126718908 hasRelatedWork W1980525 @default.