Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126787110> ?p ?o ?g. }
- W3126787110 endingPage "6099" @default.
- W3126787110 startingPage "6094" @default.
- W3126787110 abstract "Bioorthogonal reactions are ideally suited to selectively modify proteins in complex environments, even in vivo. Kinetics and product stability of these reactions are crucial parameters to evaluate their usefulness for specific applications. Strain promoted inverse electron demand Diels-Alder cycloadditions (SPIEDAC) between tetrazines and strained alkenes or alkynes are particularly popular, as they allow ultrafast labeling inside cells. In combination with genetic code expansion (GCE)-a method that allows to incorporate noncanonical amino acids (ncAAs) site-specifically into proteins in vivo. These reactions enable residue-specific fluorophore attachment to proteins in living mammalian cells. Several SPIEDAC capable ncAAs have been presented and studied under diverse conditions, revealing different instabilities ranging from educt decomposition to product loss due to β-elimination. To identify which compounds yield the best labeling inside living mammalian cells has frequently been difficult. In this study we present a) the synthesis of four new SPIEDAC reactive ncAAs that cannot undergo β-elimination and b) a fluorescence flow cytometry based FRET-assay to measure reaction kinetics inside living cells. Our results, which at first sight can be seen conflicting with some other studies, capture GCE-specific experimental conditions, such as long-term exposure of the ring-strained ncAA to living cells, that are not taken into account in other assays." @default.
- W3126787110 created "2021-02-15" @default.
- W3126787110 creator A5013034278 @default.
- W3126787110 creator A5013550941 @default.
- W3126787110 creator A5013949359 @default.
- W3126787110 creator A5035176133 @default.
- W3126787110 creator A5037285551 @default.
- W3126787110 creator A5042588448 @default.
- W3126787110 creator A5057400992 @default.
- W3126787110 creator A5069111179 @default.
- W3126787110 creator A5069202082 @default.
- W3126787110 date "2021-03-04" @default.
- W3126787110 modified "2023-10-12" @default.
- W3126787110 title "Synthesis and Evaluation of Novel Ring‐Strained Noncanonical Amino Acids for Residue‐Specific Bioorthogonal Reactions in Living Cells" @default.
- W3126787110 cites W1938296151 @default.
- W3126787110 cites W1978407833 @default.
- W3126787110 cites W1982826901 @default.
- W3126787110 cites W1984981795 @default.
- W3126787110 cites W1992502609 @default.
- W3126787110 cites W2007100093 @default.
- W3126787110 cites W2007736465 @default.
- W3126787110 cites W2016122189 @default.
- W3126787110 cites W2029672674 @default.
- W3126787110 cites W2034097144 @default.
- W3126787110 cites W2045364513 @default.
- W3126787110 cites W2050378453 @default.
- W3126787110 cites W2060391020 @default.
- W3126787110 cites W2062524026 @default.
- W3126787110 cites W2063653779 @default.
- W3126787110 cites W2065293903 @default.
- W3126787110 cites W2074244626 @default.
- W3126787110 cites W2076541976 @default.
- W3126787110 cites W2088497317 @default.
- W3126787110 cites W2089268815 @default.
- W3126787110 cites W2095435739 @default.
- W3126787110 cites W2103346924 @default.
- W3126787110 cites W2104312767 @default.
- W3126787110 cites W2111789849 @default.
- W3126787110 cites W2121108322 @default.
- W3126787110 cites W2133254766 @default.
- W3126787110 cites W2134152126 @default.
- W3126787110 cites W2134278392 @default.
- W3126787110 cites W2134796998 @default.
- W3126787110 cites W2137162349 @default.
- W3126787110 cites W2138642172 @default.
- W3126787110 cites W2140665471 @default.
- W3126787110 cites W2148123458 @default.
- W3126787110 cites W2148313902 @default.
- W3126787110 cites W2148479920 @default.
- W3126787110 cites W2149148789 @default.
- W3126787110 cites W2151709132 @default.
- W3126787110 cites W2155827990 @default.
- W3126787110 cites W2166595842 @default.
- W3126787110 cites W2169777747 @default.
- W3126787110 cites W2292719107 @default.
- W3126787110 cites W2327370237 @default.
- W3126787110 cites W2332024781 @default.
- W3126787110 cites W2344885917 @default.
- W3126787110 cites W2399274946 @default.
- W3126787110 cites W2474094449 @default.
- W3126787110 cites W2530773901 @default.
- W3126787110 cites W2534194367 @default.
- W3126787110 cites W2534235442 @default.
- W3126787110 cites W2534534291 @default.
- W3126787110 cites W2588345894 @default.
- W3126787110 cites W2606822983 @default.
- W3126787110 cites W2612323794 @default.
- W3126787110 cites W2731987565 @default.
- W3126787110 cites W2763278454 @default.
- W3126787110 cites W2782444079 @default.
- W3126787110 cites W2787623985 @default.
- W3126787110 cites W2802416817 @default.
- W3126787110 cites W2803722031 @default.
- W3126787110 cites W2808770696 @default.
- W3126787110 cites W2883738486 @default.
- W3126787110 cites W2884767099 @default.
- W3126787110 cites W2885139429 @default.
- W3126787110 cites W2894236370 @default.
- W3126787110 cites W2923609388 @default.
- W3126787110 cites W2942451186 @default.
- W3126787110 cites W2947191811 @default.
- W3126787110 cites W3011192824 @default.
- W3126787110 cites W3015152715 @default.
- W3126787110 cites W3020424827 @default.
- W3126787110 cites W3028975353 @default.
- W3126787110 cites W3032151504 @default.
- W3126787110 cites W3037161927 @default.
- W3126787110 cites W3037356316 @default.
- W3126787110 cites W3121555508 @default.
- W3126787110 cites W4206203129 @default.
- W3126787110 cites W4234760228 @default.
- W3126787110 cites W4246061912 @default.
- W3126787110 cites W4247794123 @default.
- W3126787110 cites W4248003274 @default.
- W3126787110 cites W4253739430 @default.
- W3126787110 cites W4255472283 @default.
- W3126787110 cites W4255761019 @default.
- W3126787110 doi "https://doi.org/10.1002/chem.202100322" @default.