Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126805763> ?p ?o ?g. }
- W3126805763 endingPage "14" @default.
- W3126805763 startingPage "1" @default.
- W3126805763 abstract "Yield prediction and variety selection are critical components for assessing production and performance in breeding programs and precision agriculture. Since plants integrate their genetics, surrounding environments, and management conditions, crop phenotypes have been measured over cropping seasons to represent the traits of varieties. These days, UAS (unmanned aircraft system) provides a new opportunity to collect high-quality images and generate reliable phenotypic data efficiently. Here, we propose high-throughput phenotyping (HTP) from multitemporal UAS images for tomato yield estimation. UAS-based RGB and multispectral images were collected weekly and biweekly, respectively. The shape of the features of tomatoes such as canopy cover, canopy, volume, and vegetation indices derived from UAS imagery was estimated throughout the entire season. To extract time-series features from UAS-based phenotypic data, crop growth and growth rate curves were fitted using mathematical curves and first derivative equations. Time-series features such as the maximum growth rate, day at a specific event, and duration were extracted from the fitted curves of different phenotypes. The linear regression model produced high <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <msup> <mrow> <mi>R</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </math> values even with different variable selection methods: all variables (0.79), forward selection (0.7), and backward selection (0.77). With factor analysis, we figured out two significant factors, growth speed and timing, related to high-yield varieties. Then, five time-series phenotypes were selected for yield prediction models explaining 65 percent of the variance in the actual harvest. The phenotypic features derived from RGB images played more important roles in prediction yield. This research also demonstrates that it is possible to select lower-performing tomato varieties successfully. The results from this work may be useful in breeding programs and research farms for selecting high-yielding and disease-/pest-resistant varieties." @default.
- W3126805763 created "2021-02-15" @default.
- W3126805763 creator A5003893581 @default.
- W3126805763 creator A5007035882 @default.
- W3126805763 creator A5018404011 @default.
- W3126805763 creator A5047239138 @default.
- W3126805763 creator A5055939096 @default.
- W3126805763 creator A5065956206 @default.
- W3126805763 creator A5070518110 @default.
- W3126805763 creator A5090645725 @default.
- W3126805763 date "2021-02-09" @default.
- W3126805763 modified "2023-10-17" @default.
- W3126805763 title "Unmanned Aircraft System- (UAS-) Based High-Throughput Phenotyping (HTP) for Tomato Yield Estimation" @default.
- W3126805763 cites W2011563921 @default.
- W3126805763 cites W2025782027 @default.
- W3126805763 cites W2038782607 @default.
- W3126805763 cites W2100719695 @default.
- W3126805763 cites W2114094841 @default.
- W3126805763 cites W2148556793 @default.
- W3126805763 cites W2163450852 @default.
- W3126805763 cites W2292421548 @default.
- W3126805763 cites W2479938810 @default.
- W3126805763 cites W2742612991 @default.
- W3126805763 cites W2767512561 @default.
- W3126805763 cites W2859001616 @default.
- W3126805763 cites W2891621712 @default.
- W3126805763 cites W2898710507 @default.
- W3126805763 cites W2903422738 @default.
- W3126805763 cites W2916306081 @default.
- W3126805763 cites W2917505878 @default.
- W3126805763 cites W2918084323 @default.
- W3126805763 cites W2921122163 @default.
- W3126805763 cites W2931291380 @default.
- W3126805763 cites W2936348993 @default.
- W3126805763 cites W2937040635 @default.
- W3126805763 cites W2940856955 @default.
- W3126805763 cites W2946526317 @default.
- W3126805763 cites W2946809859 @default.
- W3126805763 cites W2953686964 @default.
- W3126805763 cites W2954212711 @default.
- W3126805763 cites W2983056308 @default.
- W3126805763 cites W2989666306 @default.
- W3126805763 cites W2996041315 @default.
- W3126805763 cites W3007045993 @default.
- W3126805763 cites W3020699323 @default.
- W3126805763 cites W3082964614 @default.
- W3126805763 doi "https://doi.org/10.1155/2021/8875606" @default.
- W3126805763 hasPublicationYear "2021" @default.
- W3126805763 type Work @default.
- W3126805763 sameAs 3126805763 @default.
- W3126805763 citedByCount "14" @default.
- W3126805763 countsByYear W31268057632021 @default.
- W3126805763 countsByYear W31268057632022 @default.
- W3126805763 countsByYear W31268057632023 @default.
- W3126805763 crossrefType "journal-article" @default.
- W3126805763 hasAuthorship W3126805763A5003893581 @default.
- W3126805763 hasAuthorship W3126805763A5007035882 @default.
- W3126805763 hasAuthorship W3126805763A5018404011 @default.
- W3126805763 hasAuthorship W3126805763A5047239138 @default.
- W3126805763 hasAuthorship W3126805763A5055939096 @default.
- W3126805763 hasAuthorship W3126805763A5065956206 @default.
- W3126805763 hasAuthorship W3126805763A5070518110 @default.
- W3126805763 hasAuthorship W3126805763A5090645725 @default.
- W3126805763 hasBestOaLocation W31268057631 @default.
- W3126805763 hasConcept C101000010 @default.
- W3126805763 hasConcept C105795698 @default.
- W3126805763 hasConcept C134121241 @default.
- W3126805763 hasConcept C148483581 @default.
- W3126805763 hasConcept C154945302 @default.
- W3126805763 hasConcept C157764524 @default.
- W3126805763 hasConcept C173163844 @default.
- W3126805763 hasConcept C18903297 @default.
- W3126805763 hasConcept C191897082 @default.
- W3126805763 hasConcept C192562407 @default.
- W3126805763 hasConcept C33923547 @default.
- W3126805763 hasConcept C41008148 @default.
- W3126805763 hasConcept C555944384 @default.
- W3126805763 hasConcept C76155785 @default.
- W3126805763 hasConcept C81917197 @default.
- W3126805763 hasConcept C86803240 @default.
- W3126805763 hasConceptScore W3126805763C101000010 @default.
- W3126805763 hasConceptScore W3126805763C105795698 @default.
- W3126805763 hasConceptScore W3126805763C134121241 @default.
- W3126805763 hasConceptScore W3126805763C148483581 @default.
- W3126805763 hasConceptScore W3126805763C154945302 @default.
- W3126805763 hasConceptScore W3126805763C157764524 @default.
- W3126805763 hasConceptScore W3126805763C173163844 @default.
- W3126805763 hasConceptScore W3126805763C18903297 @default.
- W3126805763 hasConceptScore W3126805763C191897082 @default.
- W3126805763 hasConceptScore W3126805763C192562407 @default.
- W3126805763 hasConceptScore W3126805763C33923547 @default.
- W3126805763 hasConceptScore W3126805763C41008148 @default.
- W3126805763 hasConceptScore W3126805763C555944384 @default.
- W3126805763 hasConceptScore W3126805763C76155785 @default.
- W3126805763 hasConceptScore W3126805763C81917197 @default.
- W3126805763 hasConceptScore W3126805763C86803240 @default.
- W3126805763 hasFunder F4320308125 @default.
- W3126805763 hasLocation W31268057631 @default.