Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126861281> ?p ?o ?g. }
- W3126861281 endingPage "6315" @default.
- W3126861281 startingPage "6305" @default.
- W3126861281 abstract "Conventional spectrometers are limited by trade-offs set by size, cost, signal-to-noise ratio (SNR), and spectral resolution. Here, we demonstrate a deep learning-based spectral reconstruction framework, using a compact and low-cost on-chip sensing scheme that is not constrained by the design trade-offs inherent to grating-based spectroscopy. The system employs a plasmonic spectral encoder chip containing 252 different tiles of nanohole arrays fabricated using a scalable and low-cost imprint lithography method, where each tile has a unique geometry and, thus, a unique optical transmission spectrum. The illumination spectrum of interest directly impinges upon the plasmonic encoder, and a CMOS image sensor captures the transmitted light, without any lenses, gratings, or other optical components in between, making the entire hardware highly compact, light-weight and field-portable. A trained neural network then reconstructs the unknown spectrum using the transmitted intensity information from the spectral encoder in a feed-forward and non-iterative manner. Benefiting from the parallelization of neural networks, the average inference time per spectrum is ~28 microseconds, which is orders of magnitude faster compared to other computational spectroscopy approaches. When blindly tested on unseen new spectra (N = 14,648) with varying complexity, our deep-learning based system identified 96.86% of the spectral peaks with an average peak localization error, bandwidth error, and height error of 0.19 nm, 0.18 nm, and 7.60%, respectively. This system is also highly tolerant to fabrication defects that may arise during the imprint lithography process, which further makes it ideal for applications that demand cost-effective, field-portable and sensitive high-resolution spectroscopy tools." @default.
- W3126861281 created "2021-02-15" @default.
- W3126861281 creator A5005377074 @default.
- W3126861281 creator A5020513443 @default.
- W3126861281 creator A5022751168 @default.
- W3126861281 creator A5042685093 @default.
- W3126861281 creator A5058629781 @default.
- W3126861281 creator A5071118829 @default.
- W3126861281 creator A5071627751 @default.
- W3126861281 creator A5076329397 @default.
- W3126861281 date "2021-02-05" @default.
- W3126861281 modified "2023-10-16" @default.
- W3126861281 title "Neural Network-Based On-Chip Spectroscopy Using a Scalable Plasmonic Encoder" @default.
- W3126861281 cites W1893788338 @default.
- W3126861281 cites W1914817934 @default.
- W3126861281 cites W1970851958 @default.
- W3126861281 cites W2040869155 @default.
- W3126861281 cites W2050123983 @default.
- W3126861281 cites W2055718008 @default.
- W3126861281 cites W2120150551 @default.
- W3126861281 cites W2132011778 @default.
- W3126861281 cites W2134339791 @default.
- W3126861281 cites W2135046866 @default.
- W3126861281 cites W2140057719 @default.
- W3126861281 cites W2531123887 @default.
- W3126861281 cites W2556821973 @default.
- W3126861281 cites W2579387880 @default.
- W3126861281 cites W2580643947 @default.
- W3126861281 cites W2598229702 @default.
- W3126861281 cites W2897393425 @default.
- W3126861281 cites W2904591139 @default.
- W3126861281 cites W2918580768 @default.
- W3126861281 cites W2946949964 @default.
- W3126861281 cites W2964008709 @default.
- W3126861281 cites W2964231206 @default.
- W3126861281 cites W2966768370 @default.
- W3126861281 cites W2972084804 @default.
- W3126861281 cites W2986934761 @default.
- W3126861281 cites W3004564218 @default.
- W3126861281 cites W3007090203 @default.
- W3126861281 cites W3008398276 @default.
- W3126861281 cites W3040335717 @default.
- W3126861281 cites W3099844944 @default.
- W3126861281 cites W3104719997 @default.
- W3126861281 cites W4243212347 @default.
- W3126861281 doi "https://doi.org/10.1021/acsnano.1c00079" @default.
- W3126861281 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33543919" @default.
- W3126861281 hasPublicationYear "2021" @default.
- W3126861281 type Work @default.
- W3126861281 sameAs 3126861281 @default.
- W3126861281 citedByCount "33" @default.
- W3126861281 countsByYear W31268612812021 @default.
- W3126861281 countsByYear W31268612812022 @default.
- W3126861281 countsByYear W31268612812023 @default.
- W3126861281 crossrefType "journal-article" @default.
- W3126861281 hasAuthorship W3126861281A5005377074 @default.
- W3126861281 hasAuthorship W3126861281A5020513443 @default.
- W3126861281 hasAuthorship W3126861281A5022751168 @default.
- W3126861281 hasAuthorship W3126861281A5042685093 @default.
- W3126861281 hasAuthorship W3126861281A5058629781 @default.
- W3126861281 hasAuthorship W3126861281A5071118829 @default.
- W3126861281 hasAuthorship W3126861281A5071627751 @default.
- W3126861281 hasAuthorship W3126861281A5076329397 @default.
- W3126861281 hasBestOaLocation W31268612812 @default.
- W3126861281 hasConcept C110879396 @default.
- W3126861281 hasConcept C111919701 @default.
- W3126861281 hasConcept C118505674 @default.
- W3126861281 hasConcept C120665830 @default.
- W3126861281 hasConcept C121332964 @default.
- W3126861281 hasConcept C127413603 @default.
- W3126861281 hasConcept C154945302 @default.
- W3126861281 hasConcept C165005293 @default.
- W3126861281 hasConcept C192562407 @default.
- W3126861281 hasConcept C24326235 @default.
- W3126861281 hasConcept C2777813233 @default.
- W3126861281 hasConcept C41008148 @default.
- W3126861281 hasConcept C48044578 @default.
- W3126861281 hasConcept C49040817 @default.
- W3126861281 hasConcept C50644808 @default.
- W3126861281 hasConcept C76155785 @default.
- W3126861281 hasConcept C77088390 @default.
- W3126861281 hasConceptScore W3126861281C110879396 @default.
- W3126861281 hasConceptScore W3126861281C111919701 @default.
- W3126861281 hasConceptScore W3126861281C118505674 @default.
- W3126861281 hasConceptScore W3126861281C120665830 @default.
- W3126861281 hasConceptScore W3126861281C121332964 @default.
- W3126861281 hasConceptScore W3126861281C127413603 @default.
- W3126861281 hasConceptScore W3126861281C154945302 @default.
- W3126861281 hasConceptScore W3126861281C165005293 @default.
- W3126861281 hasConceptScore W3126861281C192562407 @default.
- W3126861281 hasConceptScore W3126861281C24326235 @default.
- W3126861281 hasConceptScore W3126861281C2777813233 @default.
- W3126861281 hasConceptScore W3126861281C41008148 @default.
- W3126861281 hasConceptScore W3126861281C48044578 @default.
- W3126861281 hasConceptScore W3126861281C49040817 @default.
- W3126861281 hasConceptScore W3126861281C50644808 @default.
- W3126861281 hasConceptScore W3126861281C76155785 @default.
- W3126861281 hasConceptScore W3126861281C77088390 @default.