Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126869868> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3126869868 endingPage "1831" @default.
- W3126869868 startingPage "1817" @default.
- W3126869868 abstract "In 5G networks, time-series data will be omnipresent for the monitoring and management of network performance metrics. With the increase in the number of Internet of Things (IoT) devices, it is expected that the number of real-time time-series data streams will increase at a fast pace, making forecasting essential for the proactive successful management of the network. In this article, we discuss to use both linear and non-linear forecasting methods, including machine learning, deep learning, and neural networks to improve 5G networks’ management. For this purpose, we design and implement a real-time distributed forecasting framework, used to make simultaneous predictions of different network performance metrics, and with different learning algorithms. By using our framework, we compare the use of forecasting methods in two network scenarios, in a real vehicular network and in a 4G network, representing two different slices in a 5G network. We also integrate our framework in a 5G architecture. Using the best forecasting models assessed previously, we propose a dynamic threshold algorithm for multi-slice management, to ensure that the resources of each slice are updated according to the slices’ needs, while avoiding congestion and saving resources for other slices. The experimental results show that it is possible to forecast the slices’ needs and congestion probability, selecting the best forecasting approach or an ensemble of the best ones, and act accordingly in the network to optimize its management." @default.
- W3126869868 created "2021-02-15" @default.
- W3126869868 creator A5008921007 @default.
- W3126869868 creator A5030232508 @default.
- W3126869868 creator A5081753587 @default.
- W3126869868 creator A5085392569 @default.
- W3126869868 date "2021-06-01" @default.
- W3126869868 modified "2023-10-15" @default.
- W3126869868 title "A Forecasting Approach to Improve Control and Management for 5G Networks" @default.
- W3126869868 cites W1986830331 @default.
- W3126869868 cites W2086288008 @default.
- W3126869868 cites W2158488708 @default.
- W3126869868 cites W2605344455 @default.
- W3126869868 cites W2617931713 @default.
- W3126869868 cites W2782672556 @default.
- W3126869868 cites W2782724984 @default.
- W3126869868 cites W2786709066 @default.
- W3126869868 cites W2801164385 @default.
- W3126869868 cites W2802897269 @default.
- W3126869868 cites W2806500311 @default.
- W3126869868 cites W2892341857 @default.
- W3126869868 cites W2900749811 @default.
- W3126869868 cites W2912263474 @default.
- W3126869868 cites W2916079228 @default.
- W3126869868 cites W2989178978 @default.
- W3126869868 cites W3008502609 @default.
- W3126869868 cites W3010267575 @default.
- W3126869868 cites W3017516661 @default.
- W3126869868 cites W3034276594 @default.
- W3126869868 cites W3039237082 @default.
- W3126869868 cites W3042918733 @default.
- W3126869868 cites W3100321043 @default.
- W3126869868 cites W3124313466 @default.
- W3126869868 doi "https://doi.org/10.1109/tnsm.2021.3056222" @default.
- W3126869868 hasPublicationYear "2021" @default.
- W3126869868 type Work @default.
- W3126869868 sameAs 3126869868 @default.
- W3126869868 citedByCount "11" @default.
- W3126869868 countsByYear W31268698682022 @default.
- W3126869868 countsByYear W31268698682023 @default.
- W3126869868 crossrefType "journal-article" @default.
- W3126869868 hasAuthorship W3126869868A5008921007 @default.
- W3126869868 hasAuthorship W3126869868A5030232508 @default.
- W3126869868 hasAuthorship W3126869868A5081753587 @default.
- W3126869868 hasAuthorship W3126869868A5085392569 @default.
- W3126869868 hasConcept C119857082 @default.
- W3126869868 hasConcept C124101348 @default.
- W3126869868 hasConcept C129763632 @default.
- W3126869868 hasConcept C151406439 @default.
- W3126869868 hasConcept C154945302 @default.
- W3126869868 hasConcept C158379750 @default.
- W3126869868 hasConcept C193415008 @default.
- W3126869868 hasConcept C195563490 @default.
- W3126869868 hasConcept C31258907 @default.
- W3126869868 hasConcept C41008148 @default.
- W3126869868 hasConcept C50644808 @default.
- W3126869868 hasConceptScore W3126869868C119857082 @default.
- W3126869868 hasConceptScore W3126869868C124101348 @default.
- W3126869868 hasConceptScore W3126869868C129763632 @default.
- W3126869868 hasConceptScore W3126869868C151406439 @default.
- W3126869868 hasConceptScore W3126869868C154945302 @default.
- W3126869868 hasConceptScore W3126869868C158379750 @default.
- W3126869868 hasConceptScore W3126869868C193415008 @default.
- W3126869868 hasConceptScore W3126869868C195563490 @default.
- W3126869868 hasConceptScore W3126869868C31258907 @default.
- W3126869868 hasConceptScore W3126869868C41008148 @default.
- W3126869868 hasConceptScore W3126869868C50644808 @default.
- W3126869868 hasIssue "2" @default.
- W3126869868 hasLocation W31268698681 @default.
- W3126869868 hasOpenAccess W3126869868 @default.
- W3126869868 hasPrimaryLocation W31268698681 @default.
- W3126869868 hasRelatedWork W1573395239 @default.
- W3126869868 hasRelatedWork W1984267261 @default.
- W3126869868 hasRelatedWork W2005936354 @default.
- W3126869868 hasRelatedWork W2347249702 @default.
- W3126869868 hasRelatedWork W2370693492 @default.
- W3126869868 hasRelatedWork W2374670545 @default.
- W3126869868 hasRelatedWork W2378053848 @default.
- W3126869868 hasRelatedWork W2384267957 @default.
- W3126869868 hasRelatedWork W2965141757 @default.
- W3126869868 hasRelatedWork W3146111732 @default.
- W3126869868 hasVolume "18" @default.
- W3126869868 isParatext "false" @default.
- W3126869868 isRetracted "false" @default.
- W3126869868 magId "3126869868" @default.
- W3126869868 workType "article" @default.