Matches in SemOpenAlex for { <https://semopenalex.org/work/W3126950359> ?p ?o ?g. }
- W3126950359 endingPage "429" @default.
- W3126950359 startingPage "429" @default.
- W3126950359 abstract "The study of the potential impact of wave energy converter (WEC) farms on the surrounding wave field at long distances from the WEC farm location (also know as “far field” effects) has been a topic of great interest in the past decade. Typically, “far-field” effects have been studied using phase average or phase resolving numerical models using a parametrization of the WEC power absorption using wave transmission coefficients. Most recent studies have focused on using coupled models between a wave-structure interaction solver and a wave-propagation model, which offer a more complex and accurate representation of the WEC hydrodynamics and PTO behaviour. The difference in the results between the two aforementioned approaches has not been studied yet, nor how different ways of modelling the PTO system can affect wave propagation in the lee of the WEC farm. The Coastal Engineering Research Group of Ghent University has developed both a parameterized model using the sponge layer technique in the mild slope wave propagation model MILDwave and a coupled model MILDwave-NEMOH (NEMOH is a boundary element method-based wave-structure interaction solver), for studying the “far-field” effects of WEC farms. The objective of the present study is to perform a comparison between both numerical approaches in terms of performance for obtaining the “far-field” effects of two WEC farms. Results are given for a series of regular wave conditions, demonstrating a better accuracy of the MILDwave-NEMOH coupled model in obtaining the wave disturbance coefficient (Kd) values around the considered WEC farms. Subsequently, the analysis is extended to study the influence of the PTO system modelling technique on the “far-field” effects by considering: (i) a linear optimal, (ii) a linear sub-optimal and (iii) a non-linear hydraulic PTO system. It is shown that modelling a linear optimal PTO system can lead to an unrealistic overestimation of the WEC motions than can heavily affect the wave height at a large distance in the lee of the WEC farm. On the contrary, modelling of a sub-optimal PTO system and of a hydraulic PTO system leads to a similar, yet reduced impact on the “far-field” effects on wave height. The comparison of the PTO systems’ modelling technique shows that when using coupled models, it is necessary to carefully model the WEC hydrodynamics and PTO behaviour as they can introduce substantial inaccuracies into the WECs’ motions and the WEC farm “far-field” effects." @default.
- W3126950359 created "2021-02-15" @default.
- W3126950359 creator A5028452562 @default.
- W3126950359 creator A5039952626 @default.
- W3126950359 creator A5073555891 @default.
- W3126950359 creator A5079549143 @default.
- W3126950359 date "2021-02-06" @default.
- W3126950359 modified "2023-09-26" @default.
- W3126950359 title "Influence of Power Take-Off Modelling on the Far-Field Effects of Wave Energy Converter Farms" @default.
- W3126950359 cites W1973587834 @default.
- W3126950359 cites W1974350578 @default.
- W3126950359 cites W1991260411 @default.
- W3126950359 cites W1999758755 @default.
- W3126950359 cites W2002210568 @default.
- W3126950359 cites W2024924237 @default.
- W3126950359 cites W2031806430 @default.
- W3126950359 cites W2050647300 @default.
- W3126950359 cites W2077855664 @default.
- W3126950359 cites W2077966721 @default.
- W3126950359 cites W2217022536 @default.
- W3126950359 cites W2280154191 @default.
- W3126950359 cites W2592097659 @default.
- W3126950359 cites W2604880238 @default.
- W3126950359 cites W2623416998 @default.
- W3126950359 cites W2765630227 @default.
- W3126950359 cites W2789800836 @default.
- W3126950359 cites W2791361761 @default.
- W3126950359 cites W2801236526 @default.
- W3126950359 cites W2883871995 @default.
- W3126950359 cites W2889674690 @default.
- W3126950359 cites W2897930664 @default.
- W3126950359 cites W2898224074 @default.
- W3126950359 cites W2898445604 @default.
- W3126950359 cites W2898523238 @default.
- W3126950359 cites W2911952478 @default.
- W3126950359 cites W2913682146 @default.
- W3126950359 cites W2917386370 @default.
- W3126950359 cites W2946952009 @default.
- W3126950359 cites W2947124136 @default.
- W3126950359 cites W2950076337 @default.
- W3126950359 cites W2972311531 @default.
- W3126950359 cites W2983548090 @default.
- W3126950359 cites W2986689506 @default.
- W3126950359 cites W2989365055 @default.
- W3126950359 cites W2998164826 @default.
- W3126950359 cites W2999727332 @default.
- W3126950359 cites W2999961783 @default.
- W3126950359 cites W3013500972 @default.
- W3126950359 cites W4240221981 @default.
- W3126950359 doi "https://doi.org/10.3390/w13040429" @default.
- W3126950359 hasPublicationYear "2021" @default.
- W3126950359 type Work @default.
- W3126950359 sameAs 3126950359 @default.
- W3126950359 citedByCount "1" @default.
- W3126950359 countsByYear W31269503592022 @default.
- W3126950359 crossrefType "journal-article" @default.
- W3126950359 hasAuthorship W3126950359A5028452562 @default.
- W3126950359 hasAuthorship W3126950359A5039952626 @default.
- W3126950359 hasAuthorship W3126950359A5073555891 @default.
- W3126950359 hasAuthorship W3126950359A5079549143 @default.
- W3126950359 hasBestOaLocation W31269503591 @default.
- W3126950359 hasConcept C114614502 @default.
- W3126950359 hasConcept C121332964 @default.
- W3126950359 hasConcept C126255220 @default.
- W3126950359 hasConcept C127413603 @default.
- W3126950359 hasConcept C135628077 @default.
- W3126950359 hasConcept C153294291 @default.
- W3126950359 hasConcept C163258240 @default.
- W3126950359 hasConcept C165464430 @default.
- W3126950359 hasConcept C199104240 @default.
- W3126950359 hasConcept C202444582 @default.
- W3126950359 hasConcept C202887219 @default.
- W3126950359 hasConcept C2778770139 @default.
- W3126950359 hasConcept C2780182046 @default.
- W3126950359 hasConcept C33923547 @default.
- W3126950359 hasConcept C35797730 @default.
- W3126950359 hasConcept C44886760 @default.
- W3126950359 hasConcept C57879066 @default.
- W3126950359 hasConcept C62520636 @default.
- W3126950359 hasConcept C63632240 @default.
- W3126950359 hasConcept C66938386 @default.
- W3126950359 hasConcept C74902906 @default.
- W3126950359 hasConcept C9652623 @default.
- W3126950359 hasConceptScore W3126950359C114614502 @default.
- W3126950359 hasConceptScore W3126950359C121332964 @default.
- W3126950359 hasConceptScore W3126950359C126255220 @default.
- W3126950359 hasConceptScore W3126950359C127413603 @default.
- W3126950359 hasConceptScore W3126950359C135628077 @default.
- W3126950359 hasConceptScore W3126950359C153294291 @default.
- W3126950359 hasConceptScore W3126950359C163258240 @default.
- W3126950359 hasConceptScore W3126950359C165464430 @default.
- W3126950359 hasConceptScore W3126950359C199104240 @default.
- W3126950359 hasConceptScore W3126950359C202444582 @default.
- W3126950359 hasConceptScore W3126950359C202887219 @default.
- W3126950359 hasConceptScore W3126950359C2778770139 @default.
- W3126950359 hasConceptScore W3126950359C2780182046 @default.
- W3126950359 hasConceptScore W3126950359C33923547 @default.
- W3126950359 hasConceptScore W3126950359C35797730 @default.