Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127014775> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3127014775 abstract "In this paper, we attempt to provide a data driven solution to model groundwater levels in the Grootfontein Aquifer in the North West Province of South Africa by testing several predictive models. Groundwater plays a crucial role in supplying water to a significant part of the population for agricultural, industrial, environmental and/or domestic use. Recent advancements in data analytics, and the analysis of large data sets has allowed the production of powerful predictive models. Five different data driven techniques namely, support vector regression, gradient boosting trees, decision trees, random forest regression and multilayer feed-forward neural network techniques were applied to predict groundwater levels. Modelling was carried out for four boreholes located in the Grootfontein dolomite aquifer considering discharge, rainfall and temperature as model inputs. Five site specific models were developed for each borehole. Model performance was evaluated using coefficient of determination and root mean squared error. Comparison of goodness of fit revealed that data driven methods can indeed capture the trend of water level fluctuations in the aquifer sufficiently with the GB algorithm performing better than other algorithms in both the training and verification stages. Whilst the models performed adequately when predicting groundwater level on a monthly basis for 36 months, further investigation is needed towards determining their efficacy in longer term projections to assist in the decision making process of sustainable groundwater use. This paper provides the following contributions: (a) a ranking of the attributes according to their mutual information (MI); (b) a reference for model selection; and (c) a predictive model to forecast groundwater levels in the Grootfontein aquifer." @default.
- W3127014775 created "2021-02-15" @default.
- W3127014775 creator A5023413505 @default.
- W3127014775 creator A5044474344 @default.
- W3127014775 creator A5053672133 @default.
- W3127014775 creator A5083977323 @default.
- W3127014775 creator A5091534140 @default.
- W3127014775 date "2020-11-25" @default.
- W3127014775 modified "2023-10-03" @default.
- W3127014775 title "Application of Machine Learning Techniques In Forecasting Groundwater Levels in the Grootfontein Aquifer" @default.
- W3127014775 cites W1667367965 @default.
- W3127014775 cites W1678356000 @default.
- W3127014775 cites W1974250802 @default.
- W3127014775 cites W1990014633 @default.
- W3127014775 cites W2001676017 @default.
- W3127014775 cites W2027095800 @default.
- W3127014775 cites W2037931255 @default.
- W3127014775 cites W2057113533 @default.
- W3127014775 cites W2059097521 @default.
- W3127014775 cites W2070761092 @default.
- W3127014775 cites W2122722067 @default.
- W3127014775 cites W2132104490 @default.
- W3127014775 cites W2147746661 @default.
- W3127014775 cites W2163648207 @default.
- W3127014775 cites W2165313910 @default.
- W3127014775 cites W2168298211 @default.
- W3127014775 cites W2790495592 @default.
- W3127014775 cites W2798741797 @default.
- W3127014775 cites W2886688446 @default.
- W3127014775 cites W2895543897 @default.
- W3127014775 cites W2955087065 @default.
- W3127014775 cites W2977702035 @default.
- W3127014775 cites W2981034263 @default.
- W3127014775 cites W4236137412 @default.
- W3127014775 cites W4239944110 @default.
- W3127014775 cites W2979754585 @default.
- W3127014775 doi "https://doi.org/10.1109/imitec50163.2020.9334142" @default.
- W3127014775 hasPublicationYear "2020" @default.
- W3127014775 type Work @default.
- W3127014775 sameAs 3127014775 @default.
- W3127014775 citedByCount "4" @default.
- W3127014775 countsByYear W31270147752020 @default.
- W3127014775 countsByYear W31270147752022 @default.
- W3127014775 countsByYear W31270147752023 @default.
- W3127014775 crossrefType "proceedings-article" @default.
- W3127014775 hasAuthorship W3127014775A5023413505 @default.
- W3127014775 hasAuthorship W3127014775A5044474344 @default.
- W3127014775 hasAuthorship W3127014775A5053672133 @default.
- W3127014775 hasAuthorship W3127014775A5083977323 @default.
- W3127014775 hasAuthorship W3127014775A5091534140 @default.
- W3127014775 hasConcept C119857082 @default.
- W3127014775 hasConcept C127313418 @default.
- W3127014775 hasConcept C154945302 @default.
- W3127014775 hasConcept C187320778 @default.
- W3127014775 hasConcept C39432304 @default.
- W3127014775 hasConcept C41008148 @default.
- W3127014775 hasConcept C524765639 @default.
- W3127014775 hasConcept C75622301 @default.
- W3127014775 hasConcept C76177295 @default.
- W3127014775 hasConcept C76886044 @default.
- W3127014775 hasConceptScore W3127014775C119857082 @default.
- W3127014775 hasConceptScore W3127014775C127313418 @default.
- W3127014775 hasConceptScore W3127014775C154945302 @default.
- W3127014775 hasConceptScore W3127014775C187320778 @default.
- W3127014775 hasConceptScore W3127014775C39432304 @default.
- W3127014775 hasConceptScore W3127014775C41008148 @default.
- W3127014775 hasConceptScore W3127014775C524765639 @default.
- W3127014775 hasConceptScore W3127014775C75622301 @default.
- W3127014775 hasConceptScore W3127014775C76177295 @default.
- W3127014775 hasConceptScore W3127014775C76886044 @default.
- W3127014775 hasLocation W31270147751 @default.
- W3127014775 hasOpenAccess W3127014775 @default.
- W3127014775 hasPrimaryLocation W31270147751 @default.
- W3127014775 hasRelatedWork W1980205985 @default.
- W3127014775 hasRelatedWork W2069462679 @default.
- W3127014775 hasRelatedWork W242216452 @default.
- W3127014775 hasRelatedWork W2749110224 @default.
- W3127014775 hasRelatedWork W2768293299 @default.
- W3127014775 hasRelatedWork W2808319270 @default.
- W3127014775 hasRelatedWork W3020231634 @default.
- W3127014775 hasRelatedWork W3137020286 @default.
- W3127014775 hasRelatedWork W3141138307 @default.
- W3127014775 hasRelatedWork W3143793017 @default.
- W3127014775 isParatext "false" @default.
- W3127014775 isRetracted "false" @default.
- W3127014775 magId "3127014775" @default.
- W3127014775 workType "article" @default.