Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127030265> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3127030265 abstract "The main theorem of this PhD thesis states the following: the genus 0 coefficients of the quantum Witten- Kontsevich series defined by Buryak, Dubrovin, Guere, and Rossi are equal to the coefficients of the polynomials defined by Goulden, Jackson, and Vakil in their study of double Hurwitz numbers. We also prove several other results on the quantum Witten-Kontsevich series. The classical Witten-Kontsevich series is a generating series of intersection numbers on the moduli spaces of stable curves. The Witten conjecture, proved by Kontsevich, asserts that this series is the logarithm of a tau function of the KdV hierarchy. In 2016, Buryak and Rossi introduced a new way to construct quantum integrable hierarchies, including a quantum KdV hierarchy. Buryak, Dubrovin, Guere and Rossi then defined quantum tau functions, one of which is the quantum Witten-Kontsevich series. This series depends on two parameters: the genus parameter _ and the quantization parameter ~. It reduces to the Witten-Kontsevich series when we plug ~ = 0. One-part double Hurwitz numbers count non-equivalent holomorphic maps from a Riemann surface of genus g to P1 with a prescribed ramification profile over 0, a complete ramification over 1, and a given number of simple ramifications elsewhere. Goulden, Jackson and Vakil proved that these numbers are polynomial in the orders of ramification over 0. We show that the coefficients of these polynomials are equal to the coefficients of the quantum Witten-Kontsevich series with _ = 0. In Chapter 1, we present the setting of the classical and quantum integrable hierarchies that we will use. We also present the construction of classical and quantum tau functions. In Chapter 2, we present the moduli spaces of curves Mg;n and their tautological rings. We briefly review the Witten conjecture. Then we introduce the double ramification cycle and discuss various methods for computing it. This cycle is needed to define the Hamiltonians of quantum integrable hierarchies. In Chapter 3, we present the quantum KdV hierarchy and some of its properties. We then define the quantum Witten-Kontsevich series as a particular quantum tau function of this hierarchy. In Chapter 4, we introduce Hurwitz numbers. We first present a remarkable link between the quantum KdV hierarchy and the cut-and-join equation. Then we introduce the so-called one-part double Hurwitz numbers. Their relation with the quantum Witten-Kontsevich series is the main result ot this thesis. In Chapter 5, we present Eulerian numbers. These numbers appear in the computations of the coefficients of the quantum Witten-Kontsevich series. Their properties are crucial for our proofs. In Chapter 6, we formulate and prove our main theorem and other results on the quantum Witten- Kontsevich series." @default.
- W3127030265 created "2021-02-15" @default.
- W3127030265 creator A5069419574 @default.
- W3127030265 date "2020-07-03" @default.
- W3127030265 modified "2023-09-23" @default.
- W3127030265 title "The quantum Witten-Kontsevich series." @default.
- W3127030265 hasPublicationYear "2020" @default.
- W3127030265 type Work @default.
- W3127030265 sameAs 3127030265 @default.
- W3127030265 citedByCount "0" @default.
- W3127030265 crossrefType "dissertation" @default.
- W3127030265 hasAuthorship W3127030265A5069419574 @default.
- W3127030265 hasConcept C121332964 @default.
- W3127030265 hasConcept C136660716 @default.
- W3127030265 hasConcept C143724316 @default.
- W3127030265 hasConcept C146630112 @default.
- W3127030265 hasConcept C151730666 @default.
- W3127030265 hasConcept C157369684 @default.
- W3127030265 hasConcept C158622935 @default.
- W3127030265 hasConcept C18556879 @default.
- W3127030265 hasConcept C200741047 @default.
- W3127030265 hasConcept C202444582 @default.
- W3127030265 hasConcept C2779148545 @default.
- W3127030265 hasConcept C33923547 @default.
- W3127030265 hasConcept C59822182 @default.
- W3127030265 hasConcept C62520636 @default.
- W3127030265 hasConcept C72738302 @default.
- W3127030265 hasConcept C73373263 @default.
- W3127030265 hasConcept C78606066 @default.
- W3127030265 hasConcept C84114770 @default.
- W3127030265 hasConcept C86803240 @default.
- W3127030265 hasConceptScore W3127030265C121332964 @default.
- W3127030265 hasConceptScore W3127030265C136660716 @default.
- W3127030265 hasConceptScore W3127030265C143724316 @default.
- W3127030265 hasConceptScore W3127030265C146630112 @default.
- W3127030265 hasConceptScore W3127030265C151730666 @default.
- W3127030265 hasConceptScore W3127030265C157369684 @default.
- W3127030265 hasConceptScore W3127030265C158622935 @default.
- W3127030265 hasConceptScore W3127030265C18556879 @default.
- W3127030265 hasConceptScore W3127030265C200741047 @default.
- W3127030265 hasConceptScore W3127030265C202444582 @default.
- W3127030265 hasConceptScore W3127030265C2779148545 @default.
- W3127030265 hasConceptScore W3127030265C33923547 @default.
- W3127030265 hasConceptScore W3127030265C59822182 @default.
- W3127030265 hasConceptScore W3127030265C62520636 @default.
- W3127030265 hasConceptScore W3127030265C72738302 @default.
- W3127030265 hasConceptScore W3127030265C73373263 @default.
- W3127030265 hasConceptScore W3127030265C78606066 @default.
- W3127030265 hasConceptScore W3127030265C84114770 @default.
- W3127030265 hasConceptScore W3127030265C86803240 @default.
- W3127030265 hasLocation W31270302651 @default.
- W3127030265 hasOpenAccess W3127030265 @default.
- W3127030265 hasPrimaryLocation W31270302651 @default.
- W3127030265 hasRelatedWork W1540543050 @default.
- W3127030265 hasRelatedWork W1667811768 @default.
- W3127030265 hasRelatedWork W1801935000 @default.
- W3127030265 hasRelatedWork W1933703862 @default.
- W3127030265 hasRelatedWork W2042210864 @default.
- W3127030265 hasRelatedWork W2112156936 @default.
- W3127030265 hasRelatedWork W2131707596 @default.
- W3127030265 hasRelatedWork W2146363735 @default.
- W3127030265 hasRelatedWork W2153317437 @default.
- W3127030265 hasRelatedWork W2160878972 @default.
- W3127030265 hasRelatedWork W2952135168 @default.
- W3127030265 hasRelatedWork W2962928628 @default.
- W3127030265 hasRelatedWork W3009243668 @default.
- W3127030265 hasRelatedWork W3017191905 @default.
- W3127030265 hasRelatedWork W3044842406 @default.
- W3127030265 hasRelatedWork W3132152717 @default.
- W3127030265 hasRelatedWork W3152596543 @default.
- W3127030265 hasRelatedWork W3161798735 @default.
- W3127030265 hasRelatedWork W32076427 @default.
- W3127030265 hasRelatedWork W72504047 @default.
- W3127030265 isParatext "false" @default.
- W3127030265 isRetracted "false" @default.
- W3127030265 magId "3127030265" @default.
- W3127030265 workType "dissertation" @default.