Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127053039> ?p ?o ?g. }
- W3127053039 endingPage "101224" @default.
- W3127053039 startingPage "101224" @default.
- W3127053039 abstract "We present a comprehensive experimental study of 12 individual as well as 6 ensemble methods for feature selection for classification tasks on environmental data, more specifically on the species distribution modeling domain. The individual methods span all 3 categories, i.e. filter, wrapper, and embedded feature selection. Experiments on 8 environmental datasets show that Shapley Additive Explanations (SHAP) and Permutation Importance are the most effective individual methods, both from the wrapper category. Generally, filter methods perform poorly, and embedded methods fall in-between. Of the 2 machine learning algorithms used, Random Forest and LightGBM, the latter prevailed. Of the 6 ensemble methods considered, i.e. Borda Count, Condorcet, Coombs, Bucklin, Instant Runoff, and Reciprocal Ranking, the last one performs best, outperforming every other method, individual or ensemble, and has a high stability." @default.
- W3127053039 created "2021-02-15" @default.
- W3127053039 creator A5058891144 @default.
- W3127053039 creator A5085013156 @default.
- W3127053039 date "2021-03-01" @default.
- W3127053039 modified "2023-10-17" @default.
- W3127053039 title "An evaluation of feature selection methods for environmental data" @default.
- W3127053039 cites W1491070134 @default.
- W3127053039 cites W1969801086 @default.
- W3127053039 cites W2017337590 @default.
- W3127053039 cites W2053315995 @default.
- W3127053039 cites W2063424920 @default.
- W3127053039 cites W2069321575 @default.
- W3127053039 cites W2083945868 @default.
- W3127053039 cites W2088663495 @default.
- W3127053039 cites W2102636708 @default.
- W3127053039 cites W2102831150 @default.
- W3127053039 cites W2112315008 @default.
- W3127053039 cites W2117004913 @default.
- W3127053039 cites W2131871423 @default.
- W3127053039 cites W2141826465 @default.
- W3127053039 cites W2146739527 @default.
- W3127053039 cites W2148143831 @default.
- W3127053039 cites W2156665896 @default.
- W3127053039 cites W2169281690 @default.
- W3127053039 cites W2343420905 @default.
- W3127053039 cites W2425246132 @default.
- W3127053039 cites W2550093240 @default.
- W3127053039 cites W2556301080 @default.
- W3127053039 cites W2742471985 @default.
- W3127053039 cites W2765937321 @default.
- W3127053039 cites W2795896985 @default.
- W3127053039 cites W2810226251 @default.
- W3127053039 cites W2889590147 @default.
- W3127053039 cites W2911964244 @default.
- W3127053039 cites W2945861494 @default.
- W3127053039 cites W2964278775 @default.
- W3127053039 cites W3110786237 @default.
- W3127053039 cites W4236137412 @default.
- W3127053039 doi "https://doi.org/10.1016/j.ecoinf.2021.101224" @default.
- W3127053039 hasPublicationYear "2021" @default.
- W3127053039 type Work @default.
- W3127053039 sameAs 3127053039 @default.
- W3127053039 citedByCount "50" @default.
- W3127053039 countsByYear W31270530392021 @default.
- W3127053039 countsByYear W31270530392022 @default.
- W3127053039 countsByYear W31270530392023 @default.
- W3127053039 crossrefType "journal-article" @default.
- W3127053039 hasAuthorship W3127053039A5058891144 @default.
- W3127053039 hasAuthorship W3127053039A5085013156 @default.
- W3127053039 hasConcept C106131492 @default.
- W3127053039 hasConcept C112972136 @default.
- W3127053039 hasConcept C119857082 @default.
- W3127053039 hasConcept C121332964 @default.
- W3127053039 hasConcept C124101348 @default.
- W3127053039 hasConcept C134306372 @default.
- W3127053039 hasConcept C138885662 @default.
- W3127053039 hasConcept C148483581 @default.
- W3127053039 hasConcept C150921843 @default.
- W3127053039 hasConcept C153180895 @default.
- W3127053039 hasConcept C154945302 @default.
- W3127053039 hasConcept C169258074 @default.
- W3127053039 hasConcept C189430467 @default.
- W3127053039 hasConcept C21308566 @default.
- W3127053039 hasConcept C24890656 @default.
- W3127053039 hasConcept C2776401178 @default.
- W3127053039 hasConcept C31972630 @default.
- W3127053039 hasConcept C33923547 @default.
- W3127053039 hasConcept C36503486 @default.
- W3127053039 hasConcept C41008148 @default.
- W3127053039 hasConcept C41895202 @default.
- W3127053039 hasConcept C45942800 @default.
- W3127053039 hasConcept C81917197 @default.
- W3127053039 hasConceptScore W3127053039C106131492 @default.
- W3127053039 hasConceptScore W3127053039C112972136 @default.
- W3127053039 hasConceptScore W3127053039C119857082 @default.
- W3127053039 hasConceptScore W3127053039C121332964 @default.
- W3127053039 hasConceptScore W3127053039C124101348 @default.
- W3127053039 hasConceptScore W3127053039C134306372 @default.
- W3127053039 hasConceptScore W3127053039C138885662 @default.
- W3127053039 hasConceptScore W3127053039C148483581 @default.
- W3127053039 hasConceptScore W3127053039C150921843 @default.
- W3127053039 hasConceptScore W3127053039C153180895 @default.
- W3127053039 hasConceptScore W3127053039C154945302 @default.
- W3127053039 hasConceptScore W3127053039C169258074 @default.
- W3127053039 hasConceptScore W3127053039C189430467 @default.
- W3127053039 hasConceptScore W3127053039C21308566 @default.
- W3127053039 hasConceptScore W3127053039C24890656 @default.
- W3127053039 hasConceptScore W3127053039C2776401178 @default.
- W3127053039 hasConceptScore W3127053039C31972630 @default.
- W3127053039 hasConceptScore W3127053039C33923547 @default.
- W3127053039 hasConceptScore W3127053039C36503486 @default.
- W3127053039 hasConceptScore W3127053039C41008148 @default.
- W3127053039 hasConceptScore W3127053039C41895202 @default.
- W3127053039 hasConceptScore W3127053039C45942800 @default.
- W3127053039 hasConceptScore W3127053039C81917197 @default.
- W3127053039 hasLocation W31270530391 @default.
- W3127053039 hasOpenAccess W3127053039 @default.