Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127124240> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3127124240 abstract "Development of deep learning techniques plays an important role in the successful extraction of distinctive features that represent objects in images. This development has contributed significantly to obtaining unique features from individuals' facial photographs with deep learning methods. A face photograph is passed through the convolutional neural networks (CNN), and feature vectors of a certain length are produced that represent unique features for each person. The feature vectors produced differ according to the structure of the deep learning algorithm. The facial recognition model used in this study was developed by training about 3 million images, and it produces 128-length, unique vectors for each person. These vectors are classified with k-nn classifier and face recognition is made according to the appropriate k parameter selected. In the study, the method applied for solving the aging and twinning situations with deep learning, which is one of the important problems encountered in face recognition, is discussed. With deep learning, face recognition was made using the prepared twins' dataset, and Euclidean distance analysis of the produced feature vectors was done for twins. The model was trained using old photographs of the people and k-nn classifier, and the current photographs and results of the people were tested." @default.
- W3127124240 created "2021-02-15" @default.
- W3127124240 creator A5030060944 @default.
- W3127124240 creator A5039878369 @default.
- W3127124240 date "2020-11-26" @default.
- W3127124240 modified "2023-09-25" @default.
- W3127124240 title "Evaluation of a DNN Face Recognition System Based on Aging Characterization of a Twin Set" @default.
- W3127124240 cites W1979346812 @default.
- W3127124240 cites W2097117768 @default.
- W3127124240 cites W2098693229 @default.
- W3127124240 cites W2111084364 @default.
- W3127124240 cites W2121647436 @default.
- W3127124240 cites W2161969291 @default.
- W3127124240 cites W2163808566 @default.
- W3127124240 cites W2166939233 @default.
- W3127124240 cites W3099206234 @default.
- W3127124240 doi "https://doi.org/10.1109/eleco51834.2020.00029" @default.
- W3127124240 hasPublicationYear "2020" @default.
- W3127124240 type Work @default.
- W3127124240 sameAs 3127124240 @default.
- W3127124240 citedByCount "0" @default.
- W3127124240 crossrefType "proceedings-article" @default.
- W3127124240 hasAuthorship W3127124240A5030060944 @default.
- W3127124240 hasAuthorship W3127124240A5039878369 @default.
- W3127124240 hasConcept C108583219 @default.
- W3127124240 hasConcept C138885662 @default.
- W3127124240 hasConcept C144024400 @default.
- W3127124240 hasConcept C153180895 @default.
- W3127124240 hasConcept C154945302 @default.
- W3127124240 hasConcept C2776401178 @default.
- W3127124240 hasConcept C2779304628 @default.
- W3127124240 hasConcept C31510193 @default.
- W3127124240 hasConcept C36289849 @default.
- W3127124240 hasConcept C41008148 @default.
- W3127124240 hasConcept C41895202 @default.
- W3127124240 hasConcept C50644808 @default.
- W3127124240 hasConcept C52622490 @default.
- W3127124240 hasConcept C81363708 @default.
- W3127124240 hasConcept C83665646 @default.
- W3127124240 hasConcept C95623464 @default.
- W3127124240 hasConceptScore W3127124240C108583219 @default.
- W3127124240 hasConceptScore W3127124240C138885662 @default.
- W3127124240 hasConceptScore W3127124240C144024400 @default.
- W3127124240 hasConceptScore W3127124240C153180895 @default.
- W3127124240 hasConceptScore W3127124240C154945302 @default.
- W3127124240 hasConceptScore W3127124240C2776401178 @default.
- W3127124240 hasConceptScore W3127124240C2779304628 @default.
- W3127124240 hasConceptScore W3127124240C31510193 @default.
- W3127124240 hasConceptScore W3127124240C36289849 @default.
- W3127124240 hasConceptScore W3127124240C41008148 @default.
- W3127124240 hasConceptScore W3127124240C41895202 @default.
- W3127124240 hasConceptScore W3127124240C50644808 @default.
- W3127124240 hasConceptScore W3127124240C52622490 @default.
- W3127124240 hasConceptScore W3127124240C81363708 @default.
- W3127124240 hasConceptScore W3127124240C83665646 @default.
- W3127124240 hasConceptScore W3127124240C95623464 @default.
- W3127124240 hasLocation W31271242401 @default.
- W3127124240 hasOpenAccess W3127124240 @default.
- W3127124240 hasPrimaryLocation W31271242401 @default.
- W3127124240 hasRelatedWork W1542366543 @default.
- W3127124240 hasRelatedWork W2122763103 @default.
- W3127124240 hasRelatedWork W2156714479 @default.
- W3127124240 hasRelatedWork W2576503198 @default.
- W3127124240 hasRelatedWork W2584335650 @default.
- W3127124240 hasRelatedWork W2765530666 @default.
- W3127124240 hasRelatedWork W2848133549 @default.
- W3127124240 hasRelatedWork W2898939352 @default.
- W3127124240 hasRelatedWork W2914194627 @default.
- W3127124240 hasRelatedWork W2943988722 @default.
- W3127124240 hasRelatedWork W2944778972 @default.
- W3127124240 hasRelatedWork W2982153533 @default.
- W3127124240 hasRelatedWork W3005271701 @default.
- W3127124240 hasRelatedWork W3036052796 @default.
- W3127124240 hasRelatedWork W3172988573 @default.
- W3127124240 hasRelatedWork W3202997712 @default.
- W3127124240 hasRelatedWork W3206733051 @default.
- W3127124240 hasRelatedWork W2497517914 @default.
- W3127124240 hasRelatedWork W2828954205 @default.
- W3127124240 hasRelatedWork W3094713373 @default.
- W3127124240 isParatext "false" @default.
- W3127124240 isRetracted "false" @default.
- W3127124240 magId "3127124240" @default.
- W3127124240 workType "article" @default.