Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127225911> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3127225911 endingPage "1217" @default.
- W3127225911 startingPage "1213" @default.
- W3127225911 abstract "In any machining process, it is important to select the appropriate machining parameters to facilitate the better Material removal rate (MRR). The generation of prediction equations are of utmost importance in the optimization of the machining parameters. In this paper, an artificial neural network (ANN) assisted improved prediction model for the MRR of Glass fiber reinforced plastic composites (GFRP) turned components is built using Multiple regression analysis (MRA). Using the process parameters namely spindle speed, feed and depth of cut, the turning of the GFRP composites was carried out on a conventional lathe using single point HSS cutting tool. By employing the Taguchi's L16 array (3 Level), the experiments were conducted and the MRA was carried out for the prediction of Material removal rate (MRR). The MRA predicted values were found to be less accurate for the test data of MRR. In order to overcome this problem, an experimentally validated radial basis ANN was used to predict the MRR values for L343 array (7 level). Further using this L343 array, MRA was again conducted to develop the expression for MRR. This expression for MRR yielded a drastically improved result. The reason for this can be attributed to the use of a higher input level Taguchi's design, which was made possible by adopting the radial basis ANN." @default.
- W3127225911 created "2021-02-15" @default.
- W3127225911 creator A5056206940 @default.
- W3127225911 creator A5062708621 @default.
- W3127225911 date "2021-01-01" @default.
- W3127225911 modified "2023-09-27" @default.
- W3127225911 title "Radial basis artificial neural network assisted multiple regression analysis of a GFRP turned composites" @default.
- W3127225911 cites W2049684349 @default.
- W3127225911 cites W2593023566 @default.
- W3127225911 cites W2888901020 @default.
- W3127225911 cites W2892885051 @default.
- W3127225911 cites W2924215110 @default.
- W3127225911 cites W2946962588 @default.
- W3127225911 cites W2963278070 @default.
- W3127225911 cites W3005485403 @default.
- W3127225911 cites W645047571 @default.
- W3127225911 doi "https://doi.org/10.1016/j.matpr.2020.12.695" @default.
- W3127225911 hasPublicationYear "2021" @default.
- W3127225911 type Work @default.
- W3127225911 sameAs 3127225911 @default.
- W3127225911 citedByCount "0" @default.
- W3127225911 crossrefType "journal-article" @default.
- W3127225911 hasAuthorship W3127225911A5056206940 @default.
- W3127225911 hasAuthorship W3127225911A5062708621 @default.
- W3127225911 hasConcept C105795698 @default.
- W3127225911 hasConcept C119857082 @default.
- W3127225911 hasConcept C127413603 @default.
- W3127225911 hasConcept C152877465 @default.
- W3127225911 hasConcept C159985019 @default.
- W3127225911 hasConcept C177229083 @default.
- W3127225911 hasConcept C192562407 @default.
- W3127225911 hasConcept C33923547 @default.
- W3127225911 hasConcept C34559072 @default.
- W3127225911 hasConcept C41008148 @default.
- W3127225911 hasConcept C42632107 @default.
- W3127225911 hasConcept C50644808 @default.
- W3127225911 hasConcept C523214423 @default.
- W3127225911 hasConcept C66938386 @default.
- W3127225911 hasConcept C76344452 @default.
- W3127225911 hasConcept C78519656 @default.
- W3127225911 hasConcept C83469408 @default.
- W3127225911 hasConceptScore W3127225911C105795698 @default.
- W3127225911 hasConceptScore W3127225911C119857082 @default.
- W3127225911 hasConceptScore W3127225911C127413603 @default.
- W3127225911 hasConceptScore W3127225911C152877465 @default.
- W3127225911 hasConceptScore W3127225911C159985019 @default.
- W3127225911 hasConceptScore W3127225911C177229083 @default.
- W3127225911 hasConceptScore W3127225911C192562407 @default.
- W3127225911 hasConceptScore W3127225911C33923547 @default.
- W3127225911 hasConceptScore W3127225911C34559072 @default.
- W3127225911 hasConceptScore W3127225911C41008148 @default.
- W3127225911 hasConceptScore W3127225911C42632107 @default.
- W3127225911 hasConceptScore W3127225911C50644808 @default.
- W3127225911 hasConceptScore W3127225911C523214423 @default.
- W3127225911 hasConceptScore W3127225911C66938386 @default.
- W3127225911 hasConceptScore W3127225911C76344452 @default.
- W3127225911 hasConceptScore W3127225911C78519656 @default.
- W3127225911 hasConceptScore W3127225911C83469408 @default.
- W3127225911 hasLocation W31272259111 @default.
- W3127225911 hasOpenAccess W3127225911 @default.
- W3127225911 hasPrimaryLocation W31272259111 @default.
- W3127225911 hasRelatedWork W1479750789 @default.
- W3127225911 hasRelatedWork W2009056077 @default.
- W3127225911 hasRelatedWork W2009347966 @default.
- W3127225911 hasRelatedWork W2055644762 @default.
- W3127225911 hasRelatedWork W2126938135 @default.
- W3127225911 hasRelatedWork W2187706733 @default.
- W3127225911 hasRelatedWork W2508811533 @default.
- W3127225911 hasRelatedWork W3111680872 @default.
- W3127225911 hasRelatedWork W4206449479 @default.
- W3127225911 hasRelatedWork W3127856070 @default.
- W3127225911 hasVolume "42" @default.
- W3127225911 isParatext "false" @default.
- W3127225911 isRetracted "false" @default.
- W3127225911 magId "3127225911" @default.
- W3127225911 workType "article" @default.