Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127232088> ?p ?o ?g. }
- W3127232088 endingPage "1418" @default.
- W3127232088 startingPage "1409" @default.
- W3127232088 abstract "ConspectusThe rediscovery of the halide perovskite class of compounds and, in particular, the organic and inorganic lead halide perovskite (LHP) materials and lead-free derivatives has reached remarkable landmarks in numerous applications. First among these is the field of photovoltaics, which is at the core of today’s environmental sustainability efforts. Indeed, these efforts have born fruit, reaching to date a remarkable power conversion efficiency of 25.2% for a double-cation Cs, FA lead halide thin film device. Other applications include light and particle detectors as well as lighting. However, chemical and thermal degradation issues prevent perovskite-based devices and particularly photovoltaic modules from reaching the market. The soft ionic nature of LHPs makes these materials susceptible to delicate changes in the chemical environment. Therefore, control over their interface properties plays a critical role in maintaining their stability. Here we focus on LHP nanocrystals, where surface termination by ligands determines not only the stability of the material but also the crystallographic phase and crystal habit. A surface analysis of nanocrystal interfaces revealed the involvement of Brønsted type acid–base equilibrium in the modification of the ligand moieties present, which in turn can invoke dissolution and recrystallization into the more favorable phase in terms of minimization of the surface energy. A large library of surface ligands has already been developed showing both good chemical stability and good electronic surface passivation, resulting in near-unity emission quantum yields for some materials, particularly CsPbBr3. However, most of those ligands have a large organic tail hampering charge carrier transport and extraction in nanocrystal-based solid films.The unique perovskite structure that allows ligand substitution in the surface A (cation) sites and the soft ionic nature is expected to allow the accommodation of large dipoles across the perovskite crystal. This was shown to facilitate electron transfer across a molecular linked single-particle junction, creating a large built-in field across the junction nanodomains. This strategy could be useful for implementing LHP NCs in a p–n junction photovoltaic configuration as well as for a variety of electronic devices. A better understanding of the surface propeties of LHP nanocrystals will also enable better control of their growth on surfaces and in confined volumes, such as those afforded by metal–organic frameworks, zeolites, or chemically patterened surfaces such as anodic alumina, which have already been shown to significantly alter the properties of in-situ-grown LHP materials." @default.
- W3127232088 created "2021-02-15" @default.
- W3127232088 creator A5033643500 @default.
- W3127232088 creator A5046587873 @default.
- W3127232088 creator A5049242957 @default.
- W3127232088 creator A5089076951 @default.
- W3127232088 date "2021-02-11" @default.
- W3127232088 modified "2023-10-18" @default.
- W3127232088 title "Effect of Surface Ligands in Perovskite Nanocrystals: Extending in and Reaching out" @default.
- W3127232088 cites W1963721320 @default.
- W3127232088 cites W1965722947 @default.
- W3127232088 cites W2005119936 @default.
- W3127232088 cites W2015927252 @default.
- W3127232088 cites W2019624632 @default.
- W3127232088 cites W2062242678 @default.
- W3127232088 cites W2125482708 @default.
- W3127232088 cites W2179607788 @default.
- W3127232088 cites W2202937947 @default.
- W3127232088 cites W2234840552 @default.
- W3127232088 cites W2259991906 @default.
- W3127232088 cites W2282847134 @default.
- W3127232088 cites W2327721819 @default.
- W3127232088 cites W2335095889 @default.
- W3127232088 cites W2339727841 @default.
- W3127232088 cites W2403013067 @default.
- W3127232088 cites W2415163282 @default.
- W3127232088 cites W2494207721 @default.
- W3127232088 cites W2495097577 @default.
- W3127232088 cites W2520501020 @default.
- W3127232088 cites W2571636927 @default.
- W3127232088 cites W2587918099 @default.
- W3127232088 cites W2590953996 @default.
- W3127232088 cites W2603505833 @default.
- W3127232088 cites W2604849231 @default.
- W3127232088 cites W2622706513 @default.
- W3127232088 cites W2711335539 @default.
- W3127232088 cites W2746953395 @default.
- W3127232088 cites W2755409624 @default.
- W3127232088 cites W2757007007 @default.
- W3127232088 cites W2763552432 @default.
- W3127232088 cites W2772204348 @default.
- W3127232088 cites W2787179633 @default.
- W3127232088 cites W2788820838 @default.
- W3127232088 cites W2792320479 @default.
- W3127232088 cites W2794850154 @default.
- W3127232088 cites W2801549607 @default.
- W3127232088 cites W2811237443 @default.
- W3127232088 cites W2883921103 @default.
- W3127232088 cites W2885758994 @default.
- W3127232088 cites W2886243506 @default.
- W3127232088 cites W2888039751 @default.
- W3127232088 cites W2888108017 @default.
- W3127232088 cites W2898272192 @default.
- W3127232088 cites W2898746634 @default.
- W3127232088 cites W2899059342 @default.
- W3127232088 cites W2901663578 @default.
- W3127232088 cites W2902628796 @default.
- W3127232088 cites W2903126549 @default.
- W3127232088 cites W2913749738 @default.
- W3127232088 cites W2950078406 @default.
- W3127232088 cites W2968118217 @default.
- W3127232088 cites W2981205790 @default.
- W3127232088 cites W2987655098 @default.
- W3127232088 cites W2988022525 @default.
- W3127232088 cites W2997835046 @default.
- W3127232088 cites W2999509876 @default.
- W3127232088 cites W3000016840 @default.
- W3127232088 cites W3006083510 @default.
- W3127232088 cites W3009135630 @default.
- W3127232088 cites W3009472645 @default.
- W3127232088 cites W3011425917 @default.
- W3127232088 cites W3027148337 @default.
- W3127232088 doi "https://doi.org/10.1021/acs.accounts.0c00712" @default.
- W3127232088 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8023572" @default.
- W3127232088 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33570394" @default.
- W3127232088 hasPublicationYear "2021" @default.
- W3127232088 type Work @default.
- W3127232088 sameAs 3127232088 @default.
- W3127232088 citedByCount "61" @default.
- W3127232088 countsByYear W31272320882021 @default.
- W3127232088 countsByYear W31272320882022 @default.
- W3127232088 countsByYear W31272320882023 @default.
- W3127232088 crossrefType "journal-article" @default.
- W3127232088 hasAuthorship W3127232088A5033643500 @default.
- W3127232088 hasAuthorship W3127232088A5046587873 @default.
- W3127232088 hasAuthorship W3127232088A5049242957 @default.
- W3127232088 hasAuthorship W3127232088A5089076951 @default.
- W3127232088 hasBestOaLocation W31272320882 @default.
- W3127232088 hasConcept C127413603 @default.
- W3127232088 hasConcept C145148216 @default.
- W3127232088 hasConcept C155011858 @default.
- W3127232088 hasConcept C171250308 @default.
- W3127232088 hasConcept C171560689 @default.
- W3127232088 hasConcept C175854130 @default.
- W3127232088 hasConcept C178790620 @default.
- W3127232088 hasConcept C179104552 @default.
- W3127232088 hasConcept C185592680 @default.
- W3127232088 hasConcept C186399102 @default.