Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127269508> ?p ?o ?g. }
- W3127269508 abstract "Many works in the field of automated dietary monitoring (ADM) have analyzed small data sets consisting of <; 10 subjects and <; 20 meals. This is often the first step in researching new sensors or body positions for detecting consumption. Metrics tend to focus on within-meal accuracy by quantifying physiological event detection (bites, chews, swallows). As analysis shifts to larger datasets containing many days of data from everyday life and researchers build methods that can be used in everyday life, it becomes equally important to quantify the accuracy of how many meals are detected. In small data sets most meals can be detected at least partially. In larger datasets, some meals are missed and false positives occur. In this work we discuss the pros and cons of time-based metrics and episode level metrics. We demonstrate how class imbalance affects some of the commonly used time metrics, and discuss why episode level metrics need to be reported as the field transitions from small data sets to big data sets." @default.
- W3127269508 created "2021-02-15" @default.
- W3127269508 creator A5009609077 @default.
- W3127269508 creator A5059967117 @default.
- W3127269508 date "2020-12-16" @default.
- W3127269508 modified "2023-10-18" @default.
- W3127269508 title "The Challenge of Metrics in Automated Dietary Monitoring as Analysis Transitions from Small Data to Big Data" @default.
- W3127269508 cites W1980379102 @default.
- W3127269508 cites W1994544878 @default.
- W3127269508 cites W1995330098 @default.
- W3127269508 cites W1995435322 @default.
- W3127269508 cites W2066129764 @default.
- W3127269508 cites W2083913124 @default.
- W3127269508 cites W2095344888 @default.
- W3127269508 cites W2127122874 @default.
- W3127269508 cites W2127494144 @default.
- W3127269508 cites W2128944537 @default.
- W3127269508 cites W2140595199 @default.
- W3127269508 cites W2157495328 @default.
- W3127269508 cites W2284103735 @default.
- W3127269508 cites W2338673792 @default.
- W3127269508 cites W2499587852 @default.
- W3127269508 cites W2507688760 @default.
- W3127269508 cites W2516020480 @default.
- W3127269508 cites W2580313822 @default.
- W3127269508 cites W2609956602 @default.
- W3127269508 cites W2736156588 @default.
- W3127269508 cites W2754998475 @default.
- W3127269508 cites W2794466545 @default.
- W3127269508 cites W2890856336 @default.
- W3127269508 cites W2891344401 @default.
- W3127269508 cites W2899424371 @default.
- W3127269508 cites W2909644522 @default.
- W3127269508 cites W2922115090 @default.
- W3127269508 cites W292488259 @default.
- W3127269508 cites W2940734140 @default.
- W3127269508 cites W2945628303 @default.
- W3127269508 cites W3000269942 @default.
- W3127269508 cites W3010810189 @default.
- W3127269508 cites W3014606255 @default.
- W3127269508 cites W3029790089 @default.
- W3127269508 cites W3034498051 @default.
- W3127269508 cites W3082384604 @default.
- W3127269508 cites W3082816458 @default.
- W3127269508 cites W3104688303 @default.
- W3127269508 cites W4210263930 @default.
- W3127269508 cites W3089851637 @default.
- W3127269508 doi "https://doi.org/10.1109/bibm49941.2020.9313465" @default.
- W3127269508 hasPublicationYear "2020" @default.
- W3127269508 type Work @default.
- W3127269508 sameAs 3127269508 @default.
- W3127269508 citedByCount "4" @default.
- W3127269508 countsByYear W31272695082021 @default.
- W3127269508 countsByYear W31272695082022 @default.
- W3127269508 countsByYear W31272695082023 @default.
- W3127269508 crossrefType "proceedings-article" @default.
- W3127269508 hasAuthorship W3127269508A5009609077 @default.
- W3127269508 hasAuthorship W3127269508A5059967117 @default.
- W3127269508 hasConcept C119857082 @default.
- W3127269508 hasConcept C120665830 @default.
- W3127269508 hasConcept C121332964 @default.
- W3127269508 hasConcept C124101348 @default.
- W3127269508 hasConcept C17744445 @default.
- W3127269508 hasConcept C192209626 @default.
- W3127269508 hasConcept C199539241 @default.
- W3127269508 hasConcept C202444582 @default.
- W3127269508 hasConcept C2522767166 @default.
- W3127269508 hasConcept C2779018934 @default.
- W3127269508 hasConcept C2779662365 @default.
- W3127269508 hasConcept C33923547 @default.
- W3127269508 hasConcept C41008148 @default.
- W3127269508 hasConcept C62520636 @default.
- W3127269508 hasConcept C64869954 @default.
- W3127269508 hasConcept C75684735 @default.
- W3127269508 hasConcept C9652623 @default.
- W3127269508 hasConceptScore W3127269508C119857082 @default.
- W3127269508 hasConceptScore W3127269508C120665830 @default.
- W3127269508 hasConceptScore W3127269508C121332964 @default.
- W3127269508 hasConceptScore W3127269508C124101348 @default.
- W3127269508 hasConceptScore W3127269508C17744445 @default.
- W3127269508 hasConceptScore W3127269508C192209626 @default.
- W3127269508 hasConceptScore W3127269508C199539241 @default.
- W3127269508 hasConceptScore W3127269508C202444582 @default.
- W3127269508 hasConceptScore W3127269508C2522767166 @default.
- W3127269508 hasConceptScore W3127269508C2779018934 @default.
- W3127269508 hasConceptScore W3127269508C2779662365 @default.
- W3127269508 hasConceptScore W3127269508C33923547 @default.
- W3127269508 hasConceptScore W3127269508C41008148 @default.
- W3127269508 hasConceptScore W3127269508C62520636 @default.
- W3127269508 hasConceptScore W3127269508C64869954 @default.
- W3127269508 hasConceptScore W3127269508C75684735 @default.
- W3127269508 hasConceptScore W3127269508C9652623 @default.
- W3127269508 hasFunder F4320332161 @default.
- W3127269508 hasLocation W31272695081 @default.
- W3127269508 hasOpenAccess W3127269508 @default.
- W3127269508 hasPrimaryLocation W31272695081 @default.
- W3127269508 hasRelatedWork W1557094818 @default.
- W3127269508 hasRelatedWork W2183251326 @default.
- W3127269508 hasRelatedWork W2497432351 @default.
- W3127269508 hasRelatedWork W2499527417 @default.