Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127283689> ?p ?o ?g. }
- W3127283689 abstract "Let $mu_2(Omega)$ be the first positive eigenvalue of the Neumann Laplacian in a bounded domain $Omega subset mathbb{R}^N$. It was proved by Szego for $N=2$ and by Weinberger for $N geq 2$ that among all equimeasurable domains $mu_2(Omega)$ attains its global maximum if $Omega$ is a ball. In the present work, we develop the approach of Weinberger in two directions. Firstly, we refine the Szego-Weinberger result for a class of domains of the form $Omega_{text{out}} setminus overline{Omega}_{text{in}}$ which are either centrally symmetric or symmetric of order $2$ (with respect to any coordinate plane $(x_i,x_j)$) by showing that $mu_{2}(Omega_{text{out}} setminus overline{Omega}_{text{in}}) leq mu_2(B_beta setminus overline{B}_alpha)$, where $B_alpha, B_beta$ are balls centered at the origin such that $B_alpha subset Omega_{text{in}}$ and $|Omega_{text{out}}setminus overline{Omega}_{text{in}}|=|B_beta setminus overline{B}_alpha|$. Secondly, we provide Szegő-Weinberger type inequalities for higher eigenvalues by imposing additional symmetry assumptions on the domain. Namely, if $Omega_{text{out}} setminus overline{Omega}_{text{in}}$ is symmetric of order $4$, then we prove $mu_{i}(Omega_{text{out}} setminus overline{Omega}_{text{in}}) leq mu_i(B_beta setminus overline{B}_alpha)$ for $i=3,dots,N+2$, where we also allow $Omega_{text{in}}$ and $B_alpha$ to be empty. If $N=2$ and the domain is symmetric of order $8$, then the latter inequality persists for $i=5$. Counterexamples to the obtained inequalities for domains outside of the considered symmetry classes are given. The existence and properties of nonradial domains with required symmetries in higher dimensions are discussed. As an auxiliary result, we obtain the non-radiality of the eigenfunctions associated to $mu_{N+2}(B_beta setminus overline{B}_alpha)$." @default.
- W3127283689 created "2021-02-15" @default.
- W3127283689 creator A5005785237 @default.
- W3127283689 creator A5024078404 @default.
- W3127283689 creator A5045023152 @default.
- W3127283689 date "2021-02-11" @default.
- W3127283689 modified "2023-09-27" @default.
- W3127283689 title "Szego-Weinberger type inequalities for symmetric domains with holes" @default.
- W3127283689 cites W1519871143 @default.
- W3127283689 cites W1586863316 @default.
- W3127283689 cites W1978719615 @default.
- W3127283689 cites W1988830819 @default.
- W3127283689 cites W1989658177 @default.
- W3127283689 cites W2011087511 @default.
- W3127283689 cites W2020162890 @default.
- W3127283689 cites W2027842332 @default.
- W3127283689 cites W2037324562 @default.
- W3127283689 cites W2048305320 @default.
- W3127283689 cites W205492698 @default.
- W3127283689 cites W2070192662 @default.
- W3127283689 cites W2076395567 @default.
- W3127283689 cites W2077073942 @default.
- W3127283689 cites W2129063186 @default.
- W3127283689 cites W2138154947 @default.
- W3127283689 cites W2142702621 @default.
- W3127283689 cites W2149004421 @default.
- W3127283689 cites W2207414324 @default.
- W3127283689 cites W2313169515 @default.
- W3127283689 cites W2323291389 @default.
- W3127283689 cites W2553469114 @default.
- W3127283689 cites W2809953861 @default.
- W3127283689 cites W2962832016 @default.
- W3127283689 cites W2963437965 @default.
- W3127283689 cites W3038452180 @default.
- W3127283689 hasPublicationYear "2021" @default.
- W3127283689 type Work @default.
- W3127283689 sameAs 3127283689 @default.
- W3127283689 citedByCount "0" @default.
- W3127283689 crossrefType "posted-content" @default.
- W3127283689 hasAuthorship W3127283689A5005785237 @default.
- W3127283689 hasAuthorship W3127283689A5024078404 @default.
- W3127283689 hasAuthorship W3127283689A5045023152 @default.
- W3127283689 hasConcept C10138342 @default.
- W3127283689 hasConcept C114614502 @default.
- W3127283689 hasConcept C121332964 @default.
- W3127283689 hasConcept C122041747 @default.
- W3127283689 hasConcept C134306372 @default.
- W3127283689 hasConcept C162324750 @default.
- W3127283689 hasConcept C182306322 @default.
- W3127283689 hasConcept C18903297 @default.
- W3127283689 hasConcept C2524010 @default.
- W3127283689 hasConcept C2777299769 @default.
- W3127283689 hasConcept C2779557605 @default.
- W3127283689 hasConcept C33923547 @default.
- W3127283689 hasConcept C34388435 @default.
- W3127283689 hasConcept C36503486 @default.
- W3127283689 hasConcept C62520636 @default.
- W3127283689 hasConcept C86803240 @default.
- W3127283689 hasConceptScore W3127283689C10138342 @default.
- W3127283689 hasConceptScore W3127283689C114614502 @default.
- W3127283689 hasConceptScore W3127283689C121332964 @default.
- W3127283689 hasConceptScore W3127283689C122041747 @default.
- W3127283689 hasConceptScore W3127283689C134306372 @default.
- W3127283689 hasConceptScore W3127283689C162324750 @default.
- W3127283689 hasConceptScore W3127283689C182306322 @default.
- W3127283689 hasConceptScore W3127283689C18903297 @default.
- W3127283689 hasConceptScore W3127283689C2524010 @default.
- W3127283689 hasConceptScore W3127283689C2777299769 @default.
- W3127283689 hasConceptScore W3127283689C2779557605 @default.
- W3127283689 hasConceptScore W3127283689C33923547 @default.
- W3127283689 hasConceptScore W3127283689C34388435 @default.
- W3127283689 hasConceptScore W3127283689C36503486 @default.
- W3127283689 hasConceptScore W3127283689C62520636 @default.
- W3127283689 hasConceptScore W3127283689C86803240 @default.
- W3127283689 hasLocation W31272836891 @default.
- W3127283689 hasOpenAccess W3127283689 @default.
- W3127283689 hasPrimaryLocation W31272836891 @default.
- W3127283689 hasRelatedWork W1928080384 @default.
- W3127283689 hasRelatedWork W2070401277 @default.
- W3127283689 hasRelatedWork W2406226240 @default.
- W3127283689 hasRelatedWork W2727340968 @default.
- W3127283689 hasRelatedWork W2896884190 @default.
- W3127283689 hasRelatedWork W2914469388 @default.
- W3127283689 hasRelatedWork W2949258591 @default.
- W3127283689 hasRelatedWork W2949644742 @default.
- W3127283689 hasRelatedWork W2951287215 @default.
- W3127283689 hasRelatedWork W2951541632 @default.
- W3127283689 hasRelatedWork W2951796733 @default.
- W3127283689 hasRelatedWork W2953325485 @default.
- W3127283689 hasRelatedWork W2955264726 @default.
- W3127283689 hasRelatedWork W2963570223 @default.
- W3127283689 hasRelatedWork W3049734459 @default.
- W3127283689 hasRelatedWork W3084882077 @default.
- W3127283689 hasRelatedWork W3101801105 @default.
- W3127283689 hasRelatedWork W3117298525 @default.
- W3127283689 hasRelatedWork W3199928734 @default.
- W3127283689 hasRelatedWork W2994397213 @default.
- W3127283689 isParatext "false" @default.
- W3127283689 isRetracted "false" @default.
- W3127283689 magId "3127283689" @default.