Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127324871> ?p ?o ?g. }
- W3127324871 endingPage "2607" @default.
- W3127324871 startingPage "2601" @default.
- W3127324871 abstract "Introduction Sodium glucose co-transporter-2 inhibitors (SGLT2) are commonly prescribed to patients with type 2 diabetes mellitus, but can increase the risk of diabetic ketoacidosis. Identifying patients prone to diabetic ketoacidosis may help mitigate this risk. Methods We conducted a population-based cohort study of adults initiating SGLT2 inhibitor use from 2013 through 2017. The primary objective was to identify potential predictors of diabetic ketoacidosis. Two machine-learning methods were applied to model high-dimensional pre-exposure data: gradient boosted trees and least absolute shrinkage and selection operator (LASSO) regression. We rank ordered the variables produced from LASSO by the size of their estimated coefficient (largest to smallest). With gradient boosted trees, a relative importance measure for each variable is provided rather than a coefficient. The “top variables” were identified after reviewing the distributions of the effect estimates from LASSO and gradient boosted trees to identify where there was a substantial decrease in variable importance. The identified predictors were then assessed in a logistic regression model and reported as odds ratios (ORs) with 95% confidence intervals (CIs). Results We identified 111,442 adults who started SGLT2 inhibitor use. The mean age was 57 years, 44% were female, the mean hemoglobin A1C was 8.7%, and the mean creatinine was 0.89 mg/dL. During a mean follow-up of 180 days, 192 patients (0.2%, i.e., 2 per 1000) were diagnosed and hospitalized with diabetic ketoacidosis (DKA) and 475 (0.4%, i.e., 4 per 1000) were diagnosed in either an inpatient or outpatient setting. Using gradient boosted trees, the strongest predictors were prior DKA, baseline hemoglobin A1C level, baseline creatinine level, use of medications for dementia, and baseline bicarbonate level. Using LASSO regression not including laboratory test results due to missing data, the strongest predictors were prior DKA, digoxin use, use of medications for dementia, and recent hypoglycemia. The logistic regression model incorporating the variables identified from gradient boosted trees and LASSO regression suggested the following pre-exposure characteristics had the strongest association with a hospitalization for DKA: use of dementia medications (OR = 7.76, 95% CI 2.60, 23.1), prior intracranial hemorrhage (OR = 11.5, 95% CI 1.46, 91.1), a prior diagnosis of hypoglycemia (OR = 5.41, 95% CI 1.92,15.3), prior DKA (OR = 2.45, 95% CI 0.33, 18.0), digoxin use (OR = 4.00, 95% CI 1.21, 13.2), a baseline hemoglobin A1C above 10% (OR = 3.14, 95% CI 1.95, 5.06), and baseline bicarbonate below 18 mmol/L (OR 5.09, 95% CI 1.58, 16.4). Conclusion Diabetic ketoacidosis affected approximately 2 per 1000 patients starting to use an SGLT2 inhibitor. We identified both anticipated, e.g., low baseline serum bicarbonate, and unanticipated, e.g., digoxin, dementia medications, risk factors for SGLT2 inhibitor-induced DKA." @default.
- W3127324871 created "2021-02-15" @default.
- W3127324871 creator A5002722096 @default.
- W3127324871 creator A5004416630 @default.
- W3127324871 creator A5044474781 @default.
- W3127324871 creator A5053276850 @default.
- W3127324871 creator A5053499906 @default.
- W3127324871 creator A5074235726 @default.
- W3127324871 creator A5089776227 @default.
- W3127324871 date "2021-02-09" @default.
- W3127324871 modified "2023-10-16" @default.
- W3127324871 title "Identifying Risk Factors for Diabetic Ketoacidosis Associated with SGLT2 Inhibitors: a Nationwide Cohort Study in the USA" @default.
- W3127324871 cites W1525396932 @default.
- W3127324871 cites W1596202316 @default.
- W3127324871 cites W1678356000 @default.
- W3127324871 cites W1955935325 @default.
- W3127324871 cites W1972328688 @default.
- W3127324871 cites W1981482970 @default.
- W3127324871 cites W2027467816 @default.
- W3127324871 cites W2042391288 @default.
- W3127324871 cites W2050658162 @default.
- W3127324871 cites W2146264128 @default.
- W3127324871 cites W2151345870 @default.
- W3127324871 cites W2276324268 @default.
- W3127324871 cites W2301210108 @default.
- W3127324871 cites W2550194700 @default.
- W3127324871 cites W2591585197 @default.
- W3127324871 cites W2612035767 @default.
- W3127324871 cites W2615884224 @default.
- W3127324871 cites W2624032915 @default.
- W3127324871 cites W2626446274 @default.
- W3127324871 cites W2736492270 @default.
- W3127324871 cites W2738105394 @default.
- W3127324871 cites W2791058787 @default.
- W3127324871 cites W2887650349 @default.
- W3127324871 cites W2889424024 @default.
- W3127324871 cites W2900732862 @default.
- W3127324871 cites W2907407506 @default.
- W3127324871 cites W2907458346 @default.
- W3127324871 cites W2939222610 @default.
- W3127324871 cites W2973090108 @default.
- W3127324871 cites W2974260792 @default.
- W3127324871 cites W2999484966 @default.
- W3127324871 doi "https://doi.org/10.1007/s11606-020-06561-z" @default.
- W3127324871 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8390572" @default.
- W3127324871 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33564942" @default.
- W3127324871 hasPublicationYear "2021" @default.
- W3127324871 type Work @default.
- W3127324871 sameAs 3127324871 @default.
- W3127324871 citedByCount "8" @default.
- W3127324871 countsByYear W31273248712021 @default.
- W3127324871 countsByYear W31273248712022 @default.
- W3127324871 countsByYear W31273248712023 @default.
- W3127324871 crossrefType "journal-article" @default.
- W3127324871 hasAuthorship W3127324871A5002722096 @default.
- W3127324871 hasAuthorship W3127324871A5004416630 @default.
- W3127324871 hasAuthorship W3127324871A5044474781 @default.
- W3127324871 hasAuthorship W3127324871A5053276850 @default.
- W3127324871 hasAuthorship W3127324871A5053499906 @default.
- W3127324871 hasAuthorship W3127324871A5074235726 @default.
- W3127324871 hasAuthorship W3127324871A5089776227 @default.
- W3127324871 hasBestOaLocation W31273248711 @default.
- W3127324871 hasConcept C126322002 @default.
- W3127324871 hasConcept C134018914 @default.
- W3127324871 hasConcept C136764020 @default.
- W3127324871 hasConcept C151956035 @default.
- W3127324871 hasConcept C156957248 @default.
- W3127324871 hasConcept C2781283889 @default.
- W3127324871 hasConcept C2908647359 @default.
- W3127324871 hasConcept C37616216 @default.
- W3127324871 hasConcept C41008148 @default.
- W3127324871 hasConcept C44249647 @default.
- W3127324871 hasConcept C555293320 @default.
- W3127324871 hasConcept C71924100 @default.
- W3127324871 hasConcept C72563966 @default.
- W3127324871 hasConcept C99454951 @default.
- W3127324871 hasConceptScore W3127324871C126322002 @default.
- W3127324871 hasConceptScore W3127324871C134018914 @default.
- W3127324871 hasConceptScore W3127324871C136764020 @default.
- W3127324871 hasConceptScore W3127324871C151956035 @default.
- W3127324871 hasConceptScore W3127324871C156957248 @default.
- W3127324871 hasConceptScore W3127324871C2781283889 @default.
- W3127324871 hasConceptScore W3127324871C2908647359 @default.
- W3127324871 hasConceptScore W3127324871C37616216 @default.
- W3127324871 hasConceptScore W3127324871C41008148 @default.
- W3127324871 hasConceptScore W3127324871C44249647 @default.
- W3127324871 hasConceptScore W3127324871C555293320 @default.
- W3127324871 hasConceptScore W3127324871C71924100 @default.
- W3127324871 hasConceptScore W3127324871C72563966 @default.
- W3127324871 hasConceptScore W3127324871C99454951 @default.
- W3127324871 hasIssue "9" @default.
- W3127324871 hasLocation W31273248711 @default.
- W3127324871 hasLocation W31273248712 @default.
- W3127324871 hasLocation W31273248713 @default.
- W3127324871 hasOpenAccess W3127324871 @default.
- W3127324871 hasPrimaryLocation W31273248711 @default.
- W3127324871 hasRelatedWork W2037611947 @default.
- W3127324871 hasRelatedWork W2138334887 @default.