Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127329908> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3127329908 endingPage "2547" @default.
- W3127329908 startingPage "2535" @default.
- W3127329908 abstract "In controller area networks (CANs), electronic control units (ECUs) such as telematics ECUs and on-board diagnostic ports must protect the message exchange from spoofing attacks. In this paper, we propose a CAN bus authentication framework that exploits physical layer features of the messages, including message arrival intervals and signal voltages, and applies reinforcement learning to choose the authentication mode and parameter. By applying the Dyna architecture and using a double estimator, this scheme improves the utility in terms of authentication accuracy without changing the CAN bus protocol or the ECU components and requiring knowledge of the spoofing model. We also propose a deep learning version to further improve the authentication efficiency for the CAN bus. The learning scheme applies a hierarchical structure to reduce the exploration time, and uses two deep neural networks to compress the high-dimensional state space and to fully exploit the physical authentication experiences. We provide the computational complexity and the performance analysis. Experimental results verify the theoretical analysis and show that our proposed schemes significantly improve the authentication accuracy as compared with benchmark schemes." @default.
- W3127329908 created "2021-02-15" @default.
- W3127329908 creator A5027155270 @default.
- W3127329908 creator A5061723765 @default.
- W3127329908 creator A5062819916 @default.
- W3127329908 creator A5064875874 @default.
- W3127329908 creator A5091024726 @default.
- W3127329908 date "2021-01-01" @default.
- W3127329908 modified "2023-10-10" @default.
- W3127329908 title "Reinforcement Learning-Based Physical-Layer Authentication for Controller Area Networks" @default.
- W3127329908 cites W2050987508 @default.
- W3127329908 cites W2063867591 @default.
- W3127329908 cites W2072724180 @default.
- W3127329908 cites W2072951587 @default.
- W3127329908 cites W2105714535 @default.
- W3127329908 cites W2152570627 @default.
- W3127329908 cites W2169976759 @default.
- W3127329908 cites W2296701710 @default.
- W3127329908 cites W2325060691 @default.
- W3127329908 cites W2342878105 @default.
- W3127329908 cites W2344173564 @default.
- W3127329908 cites W2536935267 @default.
- W3127329908 cites W2604623014 @default.
- W3127329908 cites W2605615119 @default.
- W3127329908 cites W2743604323 @default.
- W3127329908 cites W2750755533 @default.
- W3127329908 cites W2752558064 @default.
- W3127329908 cites W2759891682 @default.
- W3127329908 cites W2790556489 @default.
- W3127329908 cites W2790772609 @default.
- W3127329908 cites W2792503273 @default.
- W3127329908 cites W2802168610 @default.
- W3127329908 cites W2884890985 @default.
- W3127329908 cites W2890419336 @default.
- W3127329908 cites W2891250288 @default.
- W3127329908 cites W2928675906 @default.
- W3127329908 cites W2962011393 @default.
- W3127329908 cites W2962253129 @default.
- W3127329908 cites W2963804058 @default.
- W3127329908 cites W2989869976 @default.
- W3127329908 cites W2997711900 @default.
- W3127329908 cites W2998500054 @default.
- W3127329908 cites W3001072634 @default.
- W3127329908 cites W3020340794 @default.
- W3127329908 cites W4234297325 @default.
- W3127329908 doi "https://doi.org/10.1109/tifs.2021.3056206" @default.
- W3127329908 hasPublicationYear "2021" @default.
- W3127329908 type Work @default.
- W3127329908 sameAs 3127329908 @default.
- W3127329908 citedByCount "26" @default.
- W3127329908 countsByYear W31273299082021 @default.
- W3127329908 countsByYear W31273299082022 @default.
- W3127329908 countsByYear W31273299082023 @default.
- W3127329908 crossrefType "journal-article" @default.
- W3127329908 hasAuthorship W3127329908A5027155270 @default.
- W3127329908 hasAuthorship W3127329908A5061723765 @default.
- W3127329908 hasAuthorship W3127329908A5062819916 @default.
- W3127329908 hasAuthorship W3127329908A5064875874 @default.
- W3127329908 hasAuthorship W3127329908A5091024726 @default.
- W3127329908 hasConcept C148417208 @default.
- W3127329908 hasConcept C154945302 @default.
- W3127329908 hasConcept C165696696 @default.
- W3127329908 hasConcept C167900197 @default.
- W3127329908 hasConcept C21564112 @default.
- W3127329908 hasConcept C31258907 @default.
- W3127329908 hasConcept C38652104 @default.
- W3127329908 hasConcept C41008148 @default.
- W3127329908 hasConcept C97541855 @default.
- W3127329908 hasConceptScore W3127329908C148417208 @default.
- W3127329908 hasConceptScore W3127329908C154945302 @default.
- W3127329908 hasConceptScore W3127329908C165696696 @default.
- W3127329908 hasConceptScore W3127329908C167900197 @default.
- W3127329908 hasConceptScore W3127329908C21564112 @default.
- W3127329908 hasConceptScore W3127329908C31258907 @default.
- W3127329908 hasConceptScore W3127329908C38652104 @default.
- W3127329908 hasConceptScore W3127329908C41008148 @default.
- W3127329908 hasConceptScore W3127329908C97541855 @default.
- W3127329908 hasFunder F4320321001 @default.
- W3127329908 hasLocation W31273299081 @default.
- W3127329908 hasOpenAccess W3127329908 @default.
- W3127329908 hasPrimaryLocation W31273299081 @default.
- W3127329908 hasRelatedWork W2013292125 @default.
- W3127329908 hasRelatedWork W2110159755 @default.
- W3127329908 hasRelatedWork W2353380350 @default.
- W3127329908 hasRelatedWork W2366467415 @default.
- W3127329908 hasRelatedWork W2466913372 @default.
- W3127329908 hasRelatedWork W2547017141 @default.
- W3127329908 hasRelatedWork W2602592226 @default.
- W3127329908 hasRelatedWork W2793020157 @default.
- W3127329908 hasRelatedWork W3111809509 @default.
- W3127329908 hasRelatedWork W3128046548 @default.
- W3127329908 hasVolume "16" @default.
- W3127329908 isParatext "false" @default.
- W3127329908 isRetracted "false" @default.
- W3127329908 magId "3127329908" @default.
- W3127329908 workType "article" @default.