Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127330229> ?p ?o ?g. }
- W3127330229 endingPage "2431" @default.
- W3127330229 startingPage "2423" @default.
- W3127330229 abstract "Abstract Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks. Results Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods. Availabilityand implementation The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W3127330229 created "2021-02-15" @default.
- W3127330229 creator A5032354393 @default.
- W3127330229 creator A5049396596 @default.
- W3127330229 creator A5085881234 @default.
- W3127330229 date "2021-02-12" @default.
- W3127330229 modified "2023-10-02" @default.
- W3127330229 title "Inference of gene regulatory networks using pseudo-time series data" @default.
- W3127330229 cites W1175879704 @default.
- W3127330229 cites W1526655549 @default.
- W3127330229 cites W1966011301 @default.
- W3127330229 cites W1986314158 @default.
- W3127330229 cites W1996264210 @default.
- W3127330229 cites W2004136952 @default.
- W3127330229 cites W2022507599 @default.
- W3127330229 cites W2034662766 @default.
- W3127330229 cites W2037544231 @default.
- W3127330229 cites W2044525257 @default.
- W3127330229 cites W2068127752 @default.
- W3127330229 cites W2070822442 @default.
- W3127330229 cites W2076513103 @default.
- W3127330229 cites W2083329762 @default.
- W3127330229 cites W2084332810 @default.
- W3127330229 cites W2092384224 @default.
- W3127330229 cites W2105712639 @default.
- W3127330229 cites W2106927126 @default.
- W3127330229 cites W2110699703 @default.
- W3127330229 cites W2111384508 @default.
- W3127330229 cites W2122708083 @default.
- W3127330229 cites W2125258701 @default.
- W3127330229 cites W2126551563 @default.
- W3127330229 cites W2128962304 @default.
- W3127330229 cites W2139997707 @default.
- W3127330229 cites W2157581457 @default.
- W3127330229 cites W2161922735 @default.
- W3127330229 cites W2164661148 @default.
- W3127330229 cites W2175406438 @default.
- W3127330229 cites W2194985241 @default.
- W3127330229 cites W2303875941 @default.
- W3127330229 cites W2327972292 @default.
- W3127330229 cites W2410378998 @default.
- W3127330229 cites W2460641621 @default.
- W3127330229 cites W2460857593 @default.
- W3127330229 cites W2498761000 @default.
- W3127330229 cites W2508622936 @default.
- W3127330229 cites W2510258558 @default.
- W3127330229 cites W2521939318 @default.
- W3127330229 cites W2544791279 @default.
- W3127330229 cites W2555391902 @default.
- W3127330229 cites W2561121788 @default.
- W3127330229 cites W2561175740 @default.
- W3127330229 cites W2561884319 @default.
- W3127330229 cites W2607076347 @default.
- W3127330229 cites W2621189008 @default.
- W3127330229 cites W2622088602 @default.
- W3127330229 cites W2626965946 @default.
- W3127330229 cites W2757021802 @default.
- W3127330229 cites W2760441177 @default.
- W3127330229 cites W2799791049 @default.
- W3127330229 cites W2801401400 @default.
- W3127330229 cites W2850647469 @default.
- W3127330229 cites W2887216660 @default.
- W3127330229 cites W2899545492 @default.
- W3127330229 cites W2907471989 @default.
- W3127330229 cites W2951850020 @default.
- W3127330229 cites W2952382191 @default.
- W3127330229 cites W2952535935 @default.
- W3127330229 cites W3093153369 @default.
- W3127330229 cites W3099289621 @default.
- W3127330229 doi "https://doi.org/10.1093/bioinformatics/btab099" @default.
- W3127330229 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33576787" @default.
- W3127330229 hasPublicationYear "2021" @default.
- W3127330229 type Work @default.
- W3127330229 sameAs 3127330229 @default.
- W3127330229 citedByCount "13" @default.
- W3127330229 countsByYear W31273302292021 @default.
- W3127330229 countsByYear W31273302292022 @default.
- W3127330229 countsByYear W31273302292023 @default.
- W3127330229 crossrefType "journal-article" @default.
- W3127330229 hasAuthorship W3127330229A5032354393 @default.
- W3127330229 hasAuthorship W3127330229A5049396596 @default.
- W3127330229 hasAuthorship W3127330229A5085881234 @default.
- W3127330229 hasConcept C104317684 @default.
- W3127330229 hasConcept C105795698 @default.
- W3127330229 hasConcept C11413529 @default.
- W3127330229 hasConcept C119857082 @default.
- W3127330229 hasConcept C124101348 @default.
- W3127330229 hasConcept C136764020 @default.
- W3127330229 hasConcept C143724316 @default.
- W3127330229 hasConcept C150194340 @default.
- W3127330229 hasConcept C151406439 @default.
- W3127330229 hasConcept C151730666 @default.
- W3127330229 hasConcept C152662350 @default.
- W3127330229 hasConcept C154945302 @default.
- W3127330229 hasConcept C2776214188 @default.
- W3127330229 hasConcept C33923547 @default.
- W3127330229 hasConcept C37616216 @default.
- W3127330229 hasConcept C41008148 @default.