Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127438141> ?p ?o ?g. }
- W3127438141 endingPage "2661" @default.
- W3127438141 startingPage "2649" @default.
- W3127438141 abstract "Fusion of low spatial resolution multispectral (LR MS) and panchromatic (PAN) images to acquire high spatial resolution multispectral (HR MS) images has attracted increasing attention in recent years. In this article, we first utilize the form of convolution matrix (CM) to formulate the image fusion problem. In order to reduce the complexity of CM, the step size is introduced and strided convolution matrix (SCM) is constructed. Then, we explore the low-rank property in SCM and impose the prior on the spatial and spectral degradation model of LR MS and PAN images. Meanwhile, sparsity in SCM is considered to further enhance the local structures in the fused image. Finally, the proposed model is optimized efficiently by the alternative direction method of multipliers. By exploiting the low-rank and sparse priors in SCM of HR MS image, the local and global structures can be better preserved. The experimental results on the reduced-resolution and full-resolution datasets also show that the proposed method behaves well in qualitative and quantitative assessments." @default.
- W3127438141 created "2021-02-15" @default.
- W3127438141 creator A5007544409 @default.
- W3127438141 creator A5014929343 @default.
- W3127438141 creator A5050740807 @default.
- W3127438141 creator A5051335238 @default.
- W3127438141 creator A5080244427 @default.
- W3127438141 creator A5089584286 @default.
- W3127438141 date "2021-01-01" @default.
- W3127438141 modified "2023-10-13" @default.
- W3127438141 title "Exploiting Low-Rank and Sparse Properties in Strided Convolution Matrix for Pansharpening" @default.
- W3127438141 cites W2005876975 @default.
- W3127438141 cites W2016378714 @default.
- W3127438141 cites W2032275874 @default.
- W3127438141 cites W2038485909 @default.
- W3127438141 cites W2039240221 @default.
- W3127438141 cites W2074926543 @default.
- W3127438141 cites W2075861921 @default.
- W3127438141 cites W2103972604 @default.
- W3127438141 cites W2106891293 @default.
- W3127438141 cites W2109484841 @default.
- W3127438141 cites W2109526535 @default.
- W3127438141 cites W2113338111 @default.
- W3127438141 cites W2117853853 @default.
- W3127438141 cites W2124743705 @default.
- W3127438141 cites W2125008487 @default.
- W3127438141 cites W2132680427 @default.
- W3127438141 cites W2139529730 @default.
- W3127438141 cites W2144436897 @default.
- W3127438141 cites W2154789478 @default.
- W3127438141 cites W2159269332 @default.
- W3127438141 cites W2163334907 @default.
- W3127438141 cites W2163677711 @default.
- W3127438141 cites W2164306391 @default.
- W3127438141 cites W2171108951 @default.
- W3127438141 cites W2171211028 @default.
- W3127438141 cites W2394774286 @default.
- W3127438141 cites W2462592242 @default.
- W3127438141 cites W2477270217 @default.
- W3127438141 cites W2511036283 @default.
- W3127438141 cites W2619662254 @default.
- W3127438141 cites W2748857496 @default.
- W3127438141 cites W2765838470 @default.
- W3127438141 cites W2777033955 @default.
- W3127438141 cites W2790597059 @default.
- W3127438141 cites W2792365373 @default.
- W3127438141 cites W2800791174 @default.
- W3127438141 cites W2807479338 @default.
- W3127438141 cites W2891914057 @default.
- W3127438141 cites W2900667430 @default.
- W3127438141 cites W2908833896 @default.
- W3127438141 cites W2915477226 @default.
- W3127438141 cites W2921660688 @default.
- W3127438141 cites W2947324203 @default.
- W3127438141 cites W2963007295 @default.
- W3127438141 cites W2964275574 @default.
- W3127438141 cites W2990365600 @default.
- W3127438141 cites W2997011911 @default.
- W3127438141 cites W3009455122 @default.
- W3127438141 cites W3023241480 @default.
- W3127438141 cites W3023991509 @default.
- W3127438141 cites W3029812440 @default.
- W3127438141 cites W3096904276 @default.
- W3127438141 cites W3099843321 @default.
- W3127438141 cites W3102253068 @default.
- W3127438141 cites W4206310440 @default.
- W3127438141 cites W4292363360 @default.
- W3127438141 doi "https://doi.org/10.1109/jstars.2021.3058158" @default.
- W3127438141 hasPublicationYear "2021" @default.
- W3127438141 type Work @default.
- W3127438141 sameAs 3127438141 @default.
- W3127438141 citedByCount "2" @default.
- W3127438141 countsByYear W31274381412023 @default.
- W3127438141 crossrefType "journal-article" @default.
- W3127438141 hasAuthorship W3127438141A5007544409 @default.
- W3127438141 hasAuthorship W3127438141A5014929343 @default.
- W3127438141 hasAuthorship W3127438141A5050740807 @default.
- W3127438141 hasAuthorship W3127438141A5051335238 @default.
- W3127438141 hasAuthorship W3127438141A5080244427 @default.
- W3127438141 hasAuthorship W3127438141A5089584286 @default.
- W3127438141 hasBestOaLocation W31274381411 @default.
- W3127438141 hasConcept C106487976 @default.
- W3127438141 hasConcept C107445234 @default.
- W3127438141 hasConcept C11413529 @default.
- W3127438141 hasConcept C114614502 @default.
- W3127438141 hasConcept C115961682 @default.
- W3127438141 hasConcept C121332964 @default.
- W3127438141 hasConcept C153180895 @default.
- W3127438141 hasConcept C154945302 @default.
- W3127438141 hasConcept C159985019 @default.
- W3127438141 hasConcept C163716315 @default.
- W3127438141 hasConcept C164226766 @default.
- W3127438141 hasConcept C173163844 @default.
- W3127438141 hasConcept C192562407 @default.
- W3127438141 hasConcept C205372480 @default.
- W3127438141 hasConcept C31972630 @default.
- W3127438141 hasConcept C33923547 @default.
- W3127438141 hasConcept C41008148 @default.