Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127564446> ?p ?o ?g. }
- W3127564446 endingPage "134" @default.
- W3127564446 startingPage "127" @default.
- W3127564446 abstract "Deep learning (DL) has emerged in recent years as an effective technique in automated ECG analysis.A retrospective, observational study was designed to assess the feasibility of detecting induced coronary artery occlusion in human subjects earlier than experienced cardiologists using a DL algorithm. A deep convolutional neural network was trained using data from the STAFF III database. The task was to classify ECG samples as showing acute coronary artery occlusion, or no occlusion. Occluded samples were recorded after 60 s of balloon occlusion of a single coronary artery. For the first iteration of the experiment, non-occluded samples were taken from ECGs recorded in a restroom prior to entering theatres. For the second iteration of the experiment, non-occluded samples were taken in the theatre prior to balloon inflation. Results were obtained using a cross-validation approach. In the first iteration of the experiment, the DL model achieved an F1 score of 0.814, which was higher than any of three reviewing cardiologists or STEMI criteria. In the second iteration of the experiment, the DL model achieved an F1 score of 0.533, which is akin to the performance of a random chance classifier.The dataset was too small for the second model to achieve meaningful performance, despite the use of transfer learning. However, 'data leakage' during the first iteration of the experiment led to falsely high results. This study highlights the risk of DL models leveraging data leaks to produce spurious results." @default.
- W3127564446 created "2021-02-15" @default.
- W3127564446 creator A5010420002 @default.
- W3127564446 creator A5042179256 @default.
- W3127564446 creator A5045151799 @default.
- W3127564446 creator A5047228462 @default.
- W3127564446 creator A5047624828 @default.
- W3127564446 creator A5067279312 @default.
- W3127564446 creator A5068565584 @default.
- W3127564446 creator A5072687303 @default.
- W3127564446 creator A5073659565 @default.
- W3127564446 creator A5084523552 @default.
- W3127564446 date "2021-02-20" @default.
- W3127564446 modified "2023-10-06" @default.
- W3127564446 title "The effect of confounding data features on a deep learning algorithm to predict complete coronary occlusion in a retrospective observational setting" @default.
- W3127564446 cites W1982441709 @default.
- W3127564446 cites W1987304112 @default.
- W3127564446 cites W2048157742 @default.
- W3127564446 cites W2053606802 @default.
- W3127564446 cites W2074771691 @default.
- W3127564446 cites W2080420127 @default.
- W3127564446 cites W2104097274 @default.
- W3127564446 cites W2132393613 @default.
- W3127564446 cites W2142965725 @default.
- W3127564446 cites W2155185020 @default.
- W3127564446 cites W2162800060 @default.
- W3127564446 cites W2509791345 @default.
- W3127564446 cites W2562251009 @default.
- W3127564446 cites W2607757716 @default.
- W3127564446 cites W2754054868 @default.
- W3127564446 cites W2760062370 @default.
- W3127564446 cites W2793455050 @default.
- W3127564446 cites W2902644322 @default.
- W3127564446 cites W2905810301 @default.
- W3127564446 cites W2974231756 @default.
- W3127564446 cites W2980819778 @default.
- W3127564446 cites W3023933473 @default.
- W3127564446 cites W3202966610 @default.
- W3127564446 cites W4234486662 @default.
- W3127564446 doi "https://doi.org/10.1093/ehjdh/ztab002" @default.
- W3127564446 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36711180" @default.
- W3127564446 hasPublicationYear "2021" @default.
- W3127564446 type Work @default.
- W3127564446 sameAs 3127564446 @default.
- W3127564446 citedByCount "8" @default.
- W3127564446 countsByYear W31275644462021 @default.
- W3127564446 countsByYear W31275644462022 @default.
- W3127564446 countsByYear W31275644462023 @default.
- W3127564446 crossrefType "journal-article" @default.
- W3127564446 hasAuthorship W3127564446A5010420002 @default.
- W3127564446 hasAuthorship W3127564446A5042179256 @default.
- W3127564446 hasAuthorship W3127564446A5045151799 @default.
- W3127564446 hasAuthorship W3127564446A5047228462 @default.
- W3127564446 hasAuthorship W3127564446A5047624828 @default.
- W3127564446 hasAuthorship W3127564446A5067279312 @default.
- W3127564446 hasAuthorship W3127564446A5068565584 @default.
- W3127564446 hasAuthorship W3127564446A5072687303 @default.
- W3127564446 hasAuthorship W3127564446A5073659565 @default.
- W3127564446 hasAuthorship W3127564446A5084523552 @default.
- W3127564446 hasBestOaLocation W31275644461 @default.
- W3127564446 hasConcept C11413529 @default.
- W3127564446 hasConcept C126322002 @default.
- W3127564446 hasConcept C154945302 @default.
- W3127564446 hasConcept C164705383 @default.
- W3127564446 hasConcept C167135981 @default.
- W3127564446 hasConcept C23131810 @default.
- W3127564446 hasConcept C2776268601 @default.
- W3127564446 hasConcept C2780393670 @default.
- W3127564446 hasConcept C41008148 @default.
- W3127564446 hasConcept C71924100 @default.
- W3127564446 hasConcept C77350462 @default.
- W3127564446 hasConcept C81363708 @default.
- W3127564446 hasConceptScore W3127564446C11413529 @default.
- W3127564446 hasConceptScore W3127564446C126322002 @default.
- W3127564446 hasConceptScore W3127564446C154945302 @default.
- W3127564446 hasConceptScore W3127564446C164705383 @default.
- W3127564446 hasConceptScore W3127564446C167135981 @default.
- W3127564446 hasConceptScore W3127564446C23131810 @default.
- W3127564446 hasConceptScore W3127564446C2776268601 @default.
- W3127564446 hasConceptScore W3127564446C2780393670 @default.
- W3127564446 hasConceptScore W3127564446C41008148 @default.
- W3127564446 hasConceptScore W3127564446C71924100 @default.
- W3127564446 hasConceptScore W3127564446C77350462 @default.
- W3127564446 hasConceptScore W3127564446C81363708 @default.
- W3127564446 hasIssue "1" @default.
- W3127564446 hasLocation W31275644461 @default.
- W3127564446 hasLocation W31275644462 @default.
- W3127564446 hasLocation W31275644463 @default.
- W3127564446 hasLocation W31275644464 @default.
- W3127564446 hasLocation W31275644465 @default.
- W3127564446 hasLocation W31275644466 @default.
- W3127564446 hasOpenAccess W3127564446 @default.
- W3127564446 hasPrimaryLocation W31275644461 @default.
- W3127564446 hasRelatedWork W1493410100 @default.
- W3127564446 hasRelatedWork W1975046232 @default.
- W3127564446 hasRelatedWork W1990395476 @default.
- W3127564446 hasRelatedWork W2014478795 @default.
- W3127564446 hasRelatedWork W2104661470 @default.