Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127566999> ?p ?o ?g. }
- W3127566999 endingPage "105690" @default.
- W3127566999 startingPage "105690" @default.
- W3127566999 abstract "The microstructural and optical properties of Mg–Zn oxide thin films deposited by aerosol assisted chemical vapor deposition onto fused silica substrates were studied as a function of the Mg concentration in the precursor solution, which was varied from 0 to 100 mol %. The thickness of all the samples was around 150 ± 20 nm. Scanning electron microscopy and grazing incidence x-ray diffraction were used for the analysis of the morphology, composition, and crystalline structure. Outcomes showed a gradual evolution of the microstructural and optical properties of the films as the Mg content increased. The systematic increase of the lattice parameter a, and the decrease of parameter c were observed with the increase of Mg concentration, nevertheless, the unit cell volume remained nearly constant, around 0.0471 ± 0.0007 nm3. Energy dispersive x-ray microanalysis results indicated that Mg /(Zn + Mg) atomic ratio (x) up to 0.59 was found for a single-phase hexagonal MgxZn1-xO film. This value is higher than most of the reported Mg content in wurtzite ZnO. At higher Mg loadings (>70 mol % in solution), the segregation of periclase MgO phases occurred. X-ray photoelectron spectroscopy confirmed the composition of selected Mg doped ZnO films and the substitution of Zn+2 by Mg+2 atoms. The Williamson-Hall analysis of diffracted peaks was employed to determine the micro-strain in the films, it was found ∈ = 0.2 ± 0.1 % with a slight tendency to decrease ∈ as x increases. For single-phase hexagonal MgxZn1-xO films, the computation of the dispersion relations of the optical constants was achieved using direct transmittance and near-normal absolute reflectance. For this objective, TFcalc software was used to fix the Sellmeier dispersion relation parameters by fitting the modeled transmittance and reflectance spectra of the stack film-substrate with corresponding experimental spectra. A detailed analysis of the optical band gap energy and its correlation with the microstructural characteristics of the films was performed, in particular with lattice parameters. The modification of optical band gap energy and lattice parameters with the inclusion of Mg in the wurtzite structure can be explained because the MgO4 unit has a compressed tetrahedral geometry with a much shorter height than those of ZnO4 tetrahedra, and due to the change in electronegativities and ionic radius between Mg and Zn, the bonding character becomes more ionic, and the increased localization of Zn 3d and O 2p orbitals. The optical band gap energy was tuned by changing the Mg content, from about 3.3 eV of undoped ZnO up to 4.3 eV of hexagonal MgxZn1−xO (x ~ 0.59). Moss relation was used to analyze the relationship of optical band gap energy and refractive index." @default.
- W3127566999 created "2021-02-15" @default.
- W3127566999 creator A5039813395 @default.
- W3127566999 creator A5041514771 @default.
- W3127566999 creator A5046506989 @default.
- W3127566999 creator A5066022998 @default.
- W3127566999 creator A5071781609 @default.
- W3127566999 creator A5076891894 @default.
- W3127566999 creator A5077982767 @default.
- W3127566999 date "2021-06-01" @default.
- W3127566999 modified "2023-09-25" @default.
- W3127566999 title "Microstructural and optical properties of high-quality Mg–Zn oxide thin films" @default.
- W3127566999 cites W1522663241 @default.
- W3127566999 cites W1610206726 @default.
- W3127566999 cites W1628478402 @default.
- W3127566999 cites W1633560137 @default.
- W3127566999 cites W1673233000 @default.
- W3127566999 cites W1963913186 @default.
- W3127566999 cites W1964087023 @default.
- W3127566999 cites W1967652077 @default.
- W3127566999 cites W1968616619 @default.
- W3127566999 cites W1979568600 @default.
- W3127566999 cites W1983647679 @default.
- W3127566999 cites W1985133623 @default.
- W3127566999 cites W1986474329 @default.
- W3127566999 cites W1990384298 @default.
- W3127566999 cites W1991134283 @default.
- W3127566999 cites W1992589988 @default.
- W3127566999 cites W2002462912 @default.
- W3127566999 cites W2012089174 @default.
- W3127566999 cites W2013674765 @default.
- W3127566999 cites W2016007691 @default.
- W3127566999 cites W2023224644 @default.
- W3127566999 cites W2027207617 @default.
- W3127566999 cites W2031526560 @default.
- W3127566999 cites W2032574625 @default.
- W3127566999 cites W2033365573 @default.
- W3127566999 cites W2036581277 @default.
- W3127566999 cites W2036803086 @default.
- W3127566999 cites W2039178798 @default.
- W3127566999 cites W2040121256 @default.
- W3127566999 cites W2040295779 @default.
- W3127566999 cites W2040432202 @default.
- W3127566999 cites W2051360802 @default.
- W3127566999 cites W2055636855 @default.
- W3127566999 cites W2073246948 @default.
- W3127566999 cites W2076333611 @default.
- W3127566999 cites W2076653766 @default.
- W3127566999 cites W2086125165 @default.
- W3127566999 cites W2087248635 @default.
- W3127566999 cites W2109783021 @default.
- W3127566999 cites W2111826330 @default.
- W3127566999 cites W2158236037 @default.
- W3127566999 cites W2215083065 @default.
- W3127566999 cites W225730630 @default.
- W3127566999 cites W2260315481 @default.
- W3127566999 cites W2290360720 @default.
- W3127566999 cites W2297003863 @default.
- W3127566999 cites W2304627192 @default.
- W3127566999 cites W2469603590 @default.
- W3127566999 cites W2516621057 @default.
- W3127566999 cites W2519605613 @default.
- W3127566999 cites W2524023542 @default.
- W3127566999 cites W2573367636 @default.
- W3127566999 cites W2580158173 @default.
- W3127566999 cites W2594355841 @default.
- W3127566999 cites W2604894459 @default.
- W3127566999 cites W2725686299 @default.
- W3127566999 cites W2736382148 @default.
- W3127566999 cites W2922479788 @default.
- W3127566999 doi "https://doi.org/10.1016/j.mssp.2021.105690" @default.
- W3127566999 hasPublicationYear "2021" @default.
- W3127566999 type Work @default.
- W3127566999 sameAs 3127566999 @default.
- W3127566999 citedByCount "4" @default.
- W3127566999 countsByYear W31275669992022 @default.
- W3127566999 countsByYear W31275669992023 @default.
- W3127566999 crossrefType "journal-article" @default.
- W3127566999 hasAuthorship W3127566999A5039813395 @default.
- W3127566999 hasAuthorship W3127566999A5041514771 @default.
- W3127566999 hasAuthorship W3127566999A5046506989 @default.
- W3127566999 hasAuthorship W3127566999A5066022998 @default.
- W3127566999 hasAuthorship W3127566999A5071781609 @default.
- W3127566999 hasAuthorship W3127566999A5076891894 @default.
- W3127566999 hasAuthorship W3127566999A5077982767 @default.
- W3127566999 hasConcept C113196181 @default.
- W3127566999 hasConcept C120665830 @default.
- W3127566999 hasConcept C121332964 @default.
- W3127566999 hasConcept C127413603 @default.
- W3127566999 hasConcept C132612359 @default.
- W3127566999 hasConcept C159985019 @default.
- W3127566999 hasConcept C171250308 @default.
- W3127566999 hasConcept C175708663 @default.
- W3127566999 hasConcept C185592680 @default.
- W3127566999 hasConcept C19067145 @default.
- W3127566999 hasConcept C191897082 @default.
- W3127566999 hasConcept C192562407 @default.
- W3127566999 hasConcept C207114421 @default.