Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127603591> ?p ?o ?g. }
- W3127603591 endingPage "109145" @default.
- W3127603591 startingPage "109145" @default.
- W3127603591 abstract "Cancer is a kind of non-communicable disease, progresses with uncontrolled cell growth in the body. The cancerous cell forms a tumor that impairs the immune system, causes other biological changes to malfunction. The most common kinds of cancer are breast, prostate, leukemia, lung, and colon cancer. The presence of the disease is identified with the proper diagnosis. Many screening procedures are suggested to find the presence of the condition under different stages. Medical practitioners further analyze these electronic health records to diagnose and treat the individual. In some cases, misdiagnosis can happen due to manual error or misinterpretation of the data. To avoid these issues, this paper presents an effective computer-aided diagnosis system supported by intelligence learning models. A machine learning-based feature modeling is proposed to improve predictive performance. From the University of California, Irvine repository, breast, cervical, and lung cancer datasets are accessed to conduct this experimental study. Supervised learning algorithms are employed to train and validate the optimal features reduced by the proposed system. Using the 10-Fold cross-validation method, the trained and performance model is evaluated with validation metrics such as accuracy, f-score, precision, and recall. The study's outcome attained 99.62%, 96.88%, and 98.21% accuracy on breast, cervical, and lung cancer datasets, respectively, which exhibits the proposed system's efficacy. Moreover, this system acts as a miscellaneous tool for capturing the pattern from many clinical trials for multiple types of cancer disease." @default.
- W3127603591 created "2021-02-15" @default.
- W3127603591 creator A5007440245 @default.
- W3127603591 creator A5010511860 @default.
- W3127603591 creator A5033532580 @default.
- W3127603591 creator A5043627040 @default.
- W3127603591 creator A5049341927 @default.
- W3127603591 creator A5079818027 @default.
- W3127603591 creator A5083131059 @default.
- W3127603591 date "2021-04-01" @default.
- W3127603591 modified "2023-10-16" @default.
- W3127603591 title "Effective multiple cancer disease diagnosis frameworks for improved healthcare using machine learning" @default.
- W3127603591 cites W1487321909 @default.
- W3127603591 cites W1500895378 @default.
- W3127603591 cites W1601792741 @default.
- W3127603591 cites W160712773 @default.
- W3127603591 cites W1967636686 @default.
- W3127603591 cites W1983772724 @default.
- W3127603591 cites W1985842955 @default.
- W3127603591 cites W1996020380 @default.
- W3127603591 cites W2003890325 @default.
- W3127603591 cites W2004320486 @default.
- W3127603591 cites W2011937074 @default.
- W3127603591 cites W2048785016 @default.
- W3127603591 cites W2050992176 @default.
- W3127603591 cites W2078294053 @default.
- W3127603591 cites W2087016914 @default.
- W3127603591 cites W2096574974 @default.
- W3127603591 cites W2113890143 @default.
- W3127603591 cites W2118142823 @default.
- W3127603591 cites W2131514409 @default.
- W3127603591 cites W2133036240 @default.
- W3127603591 cites W2356882517 @default.
- W3127603591 cites W2433481593 @default.
- W3127603591 cites W2472741927 @default.
- W3127603591 cites W2571825062 @default.
- W3127603591 cites W2791315675 @default.
- W3127603591 cites W2899520300 @default.
- W3127603591 cites W2997913640 @default.
- W3127603591 cites W3004122363 @default.
- W3127603591 cites W4255873858 @default.
- W3127603591 cites W7721922 @default.
- W3127603591 doi "https://doi.org/10.1016/j.measurement.2021.109145" @default.
- W3127603591 hasPublicationYear "2021" @default.
- W3127603591 type Work @default.
- W3127603591 sameAs 3127603591 @default.
- W3127603591 citedByCount "27" @default.
- W3127603591 countsByYear W31276035912021 @default.
- W3127603591 countsByYear W31276035912022 @default.
- W3127603591 countsByYear W31276035912023 @default.
- W3127603591 crossrefType "journal-article" @default.
- W3127603591 hasAuthorship W3127603591A5007440245 @default.
- W3127603591 hasAuthorship W3127603591A5010511860 @default.
- W3127603591 hasAuthorship W3127603591A5033532580 @default.
- W3127603591 hasAuthorship W3127603591A5043627040 @default.
- W3127603591 hasAuthorship W3127603591A5049341927 @default.
- W3127603591 hasAuthorship W3127603591A5079818027 @default.
- W3127603591 hasAuthorship W3127603591A5083131059 @default.
- W3127603591 hasConcept C119857082 @default.
- W3127603591 hasConcept C121608353 @default.
- W3127603591 hasConcept C126322002 @default.
- W3127603591 hasConcept C138885662 @default.
- W3127603591 hasConcept C142724271 @default.
- W3127603591 hasConcept C143998085 @default.
- W3127603591 hasConcept C154945302 @default.
- W3127603591 hasConcept C160735492 @default.
- W3127603591 hasConcept C162324750 @default.
- W3127603591 hasConcept C2776256026 @default.
- W3127603591 hasConcept C2776401178 @default.
- W3127603591 hasConcept C2778220009 @default.
- W3127603591 hasConcept C2779134260 @default.
- W3127603591 hasConcept C2780192828 @default.
- W3127603591 hasConcept C41008148 @default.
- W3127603591 hasConcept C41895202 @default.
- W3127603591 hasConcept C50522688 @default.
- W3127603591 hasConcept C530470458 @default.
- W3127603591 hasConcept C71924100 @default.
- W3127603591 hasConcept C81669768 @default.
- W3127603591 hasConceptScore W3127603591C119857082 @default.
- W3127603591 hasConceptScore W3127603591C121608353 @default.
- W3127603591 hasConceptScore W3127603591C126322002 @default.
- W3127603591 hasConceptScore W3127603591C138885662 @default.
- W3127603591 hasConceptScore W3127603591C142724271 @default.
- W3127603591 hasConceptScore W3127603591C143998085 @default.
- W3127603591 hasConceptScore W3127603591C154945302 @default.
- W3127603591 hasConceptScore W3127603591C160735492 @default.
- W3127603591 hasConceptScore W3127603591C162324750 @default.
- W3127603591 hasConceptScore W3127603591C2776256026 @default.
- W3127603591 hasConceptScore W3127603591C2776401178 @default.
- W3127603591 hasConceptScore W3127603591C2778220009 @default.
- W3127603591 hasConceptScore W3127603591C2779134260 @default.
- W3127603591 hasConceptScore W3127603591C2780192828 @default.
- W3127603591 hasConceptScore W3127603591C41008148 @default.
- W3127603591 hasConceptScore W3127603591C41895202 @default.
- W3127603591 hasConceptScore W3127603591C50522688 @default.
- W3127603591 hasConceptScore W3127603591C530470458 @default.
- W3127603591 hasConceptScore W3127603591C71924100 @default.
- W3127603591 hasConceptScore W3127603591C81669768 @default.